Circle MCQ Questions & Answers in Geometry | Maths

Learn Circle MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The line $$y = mx + c$$   intersects the circle $${x^2} + {y^2} = {r^2}$$   at the two real distinct points if :

A $$ - r\sqrt {1 + {m^2}} < c < r\sqrt {1 + {m^2}} $$
B $$ - r < c < r$$
C $$ - r\sqrt {1 - {m^2}} < c < r\sqrt {1 + {m^2}} $$
D none of these
Answer :   $$ - r\sqrt {1 + {m^2}} < c < r\sqrt {1 + {m^2}} $$

52. The length of the chord $$x + y = 3$$   intercepted by the circle $${x^2} + {y^2} - 2x - 2y - 2 = 0$$      is :

A $$\frac{7}{2}$$
B $$\frac{{3\sqrt 3 }}{2}$$
C $$\sqrt {14} $$
D $$\frac{{\sqrt 7 }}{2}$$
Answer :   $$\sqrt {14} $$

53. The centre of circle inscribed in square formed by the lines $${x^2} - 8x + 12 = 0$$    and $${y^2} - 14y + 45 = 0,$$    is-

A $$\left( {4,\,7} \right)$$
B $$\left( {7,\,4} \right)$$
C $$\left( {9,\,4} \right)$$
D $$\left( {4,\,9} \right)$$
Answer :   $$\left( {4,\,7} \right)$$

54. The lines $$2x-3y = 5$$   and $$3x-4y = 7$$   are diameters of a circle of area $$154 \,sq.\, units.$$    Then the equation of this circle is-

A $${x^2} + {y^2} + 2x - 2y = 62$$
B $${x^2} + {y^2} + 2x - 2y = 47$$
C $${x^2} + {y^2} - 2x + 2y = 47$$
D $${x^2} + {y^2} - 2x + 2y = 62$$
Answer :   $${x^2} + {y^2} - 2x + 2y = 47$$

55. The centre of the circle passing through $$\left( {0,\,0} \right)$$  and $$\left( {1,\,0} \right)$$  and touching the circle $${x^2} + {y^2} = 9$$   is-

A $$\left( {\frac{1}{2},\,\frac{1}{2}} \right)$$
B $$\left( {\frac{1}{2},\, - \sqrt 2 } \right)$$
C $$\left( {\frac{3}{2},\,\frac{1}{2}} \right)$$
D $$\left( {\frac{1}{2},\,\frac{3}{2}} \right)$$
Answer :   $$\left( {\frac{1}{2},\, - \sqrt 2 } \right)$$

56. If $$p$$ and $$q$$ be the longest distance and the shortest distance respectively of the point $$\left( { - 7,\,2} \right)$$  from any point $$\left( {\alpha ,\,\beta } \right)$$  on the curve whose equation is $${x^2} + {y^2} - 10x - 14y - 51 = 0$$       then GM of $$p$$ and $$q$$ is equal to :

A $$2\sqrt {11} $$
B $$5\sqrt {5} $$
C $$13$$
D none of these
Answer :   $$2\sqrt {11} $$

57. Two circles $${x^2} + {y^2} = 6$$    and $${x^2} + {y^2} - 6x + 8 = 0$$     are given. Then the equation of the circle through their points of intersection and the point $$\left( {1,\,1} \right)$$  is-

A $${x^2} + {y^2} - 6x + 4 = 0$$
B $${x^2} + {y^2} - 3x + 1 = 0$$
C $${x^2} + {y^2} - 4y + 2 = 0$$
D none of these
Answer :   $${x^2} + {y^2} - 3x + 1 = 0$$

58. The number of points with integral coordinates that are interior to the circle $${x^2} + {y^2} = 16$$   is :

A 43
B 49
C 45
D 51
Answer :   45

59. The equation of a circle is $${x^2} + {y^2} = 4.$$   The centre of the smallest circle touching this circle and the line $$x + y = 5\sqrt 2 $$    has the coordinates :

A $$\left( {\frac{7}{{2\sqrt 2 }},\,\frac{7}{{2\sqrt 2 }}} \right)$$
B $$\left( {\frac{3}{2},\,\frac{3}{2}} \right)$$
C $$\left( { - \frac{7}{{2\sqrt 2 }},\, - \frac{7}{{2\sqrt 2 }}} \right)$$
D none of these
Answer :   $$\left( {\frac{7}{{2\sqrt 2 }},\,\frac{7}{{2\sqrt 2 }}} \right)$$

60. Consider a family of circles which are passing through the point $$\left( { - 1,\,1} \right)$$  and are tangent to $$x$$-axis. If $$\left( {h,\,k} \right)$$  are the coordinate of the centre of the circles, then the set of values of $$k$$ is given by the interval-

A $$ - \frac{1}{2} \leqslant k \leqslant \frac{1}{2}$$
B $$k \leqslant \frac{1}{2}$$
C $$0 \leqslant k \leqslant \frac{1}{2}$$
D $$k \geqslant \frac{1}{2}$$
Answer :   $$k \geqslant \frac{1}{2}$$