Ellipse MCQ Questions & Answers in Geometry | Maths
Learn Ellipse MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
The set of real values of $$k$$ for which the equation $$\left( {k + 1} \right){x^2} + 2\left( {k - 1} \right)xy + {y^2} - x + 2y + 3 = 0$$ represents an ellipse is :
12.
Let $${S_1},\,{S_2}$$ be the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{8} = 1.$$ If $$A\left( {x + y} \right)$$ is any point on the ellipse, then the maximum area of the triangle $$A{S_1}{S_2}$$ (in square units) is :
A
$$2\sqrt 2 $$
B
$$2\sqrt 3 $$
C
$$8$$
D
$$4$$
Answer :
$$8$$
Equation of ellipse is $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{8} = 1$$ where, $$a = 4,\,b = 2\sqrt 2 $$
Eccentricity, $$e = \sqrt {1 - \frac{{{b^2}}}{{{a^2}}}} = \sqrt {1 - \frac{8}{{16}}} = \frac{1}{{\sqrt 2 }}$$
Area is maximum when vertex is $$\left( {0,\,b} \right)$$
$$\therefore $$ Maximum area
$$\eqalign{
& = \frac{1}{2} \times 2ae \times b \cr
& = \frac{1}{2} \times 2 \times 4 \times 2\sqrt 2 \times \frac{1}{{\sqrt 2 }} \cr
& = 8{\text{ square units}} \cr} $$
13.
The tangent to the ellipse $$16{x^2} + 9{y^2} = 144,$$ making equal intercepts on both the axes, is :
A
$$y = x + 3$$
B
$$y = x - 2$$
C
$$x + y = 5$$
D
$$y = - x + 4$$
Answer :
$$x + y = 5$$
Tangent at $$\left( {{x_1},\,{y_1}} \right)$$ is $$16{x_1}x + 9{y_1}y = 144.$$ Intercepts on axes are equal $$ \Rightarrow \frac{{144}}{{16{x_1}}} = \frac{{144}}{{9{y_1}}}{\text{ or }}9{y_1} = 16{x_1}{\text{. Also, }}16x_1^2 + 9y_1^2 = 144$$
Solving these, $${x_1} = \frac{9}{5},\, - \frac{9}{5}{\text{ and }}{y_1} = \frac{{16}}{5},\, - \frac{{16}}{5}$$
So, the tangent is $$16 \times \frac{9}{5}x + 9 \times \frac{{16}}{5}y = 144{\text{ or }}16 \times \frac{{ - 9}}{5}x + 9 \times \frac{{ - 16}}{5}y = 144$$
$$ \Rightarrow \,\,x + y = 5{\text{ or }}x + y + 5 = 0$$
14.
The equation of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$ and having centre at $$\left( {0,\,3} \right)$$ is :
A
$${x^2} + {y^2} - 6y - 7 = 0$$
B
$${x^2} + {y^2} - 6y + 7 = 0$$
C
$${x^2} + {y^2} - 6y - 5 = 0$$
D
$${x^2} + {y^2} - 6y + 5 = 0$$
Answer :
$${x^2} + {y^2} - 6y - 7 = 0$$
From the given equation of ellipse, we have
$$\eqalign{
& a = 4,\,b = 3,\,e = \sqrt {1 - \frac{9}{{16}}} \cr
& \Rightarrow e = \frac{{\sqrt 7 }}{4} \cr} $$
Now, radius of this circle $$ = {a^2} = 16$$
$$ \Rightarrow $$ Foci $$ = \left( { \pm \sqrt 7 ,\,0} \right)$$
Now equation of circle is $${\left( {x - 0} \right)^2} + {\left( {y - 3} \right)^2} = 16$$
$${x^2} + {y^2} - 6y - 7 = 0$$
15.
If the latus rectum of an ellipse is equal to one half its minor axis, what is the eccentricity of the ellipse ?
A
$$\frac{1}{2}$$
B
$$\frac{{\sqrt 3 }}{2}$$
C
$$\frac{3}{4}$$
D
$$\frac{{\sqrt {15} }}{4}$$
Answer :
$$\frac{{\sqrt 3 }}{2}$$
Length of latus rectum of an ellipse is $$\frac{{2{b^2}}}{a}$$ where $$b$$ is semi minor axis and $$a$$ is semimajor axis. As given,
$$\frac{{2{b^2}}}{a} = b\, \Rightarrow 2b = a\, \Rightarrow \frac{b}{a} = \frac{1}{2}$$
We know that eccentricity $$e = \sqrt {1 - \frac{{{b^2}}}{{{a^2}}}} = \sqrt {1 - \frac{1}{4}} = \frac{{\sqrt 3 }}{2}$$
16.
The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M.$$ Then the area of the triangle with vertices at $$A,\,M$$ and the origin $$O$$ is-
A
$$\frac{{31}}{{10}}$$
B
$$\frac{{29}}{{10}}$$
C
$$\frac{{21}}{{10}}$$
D
$$\frac{{27}}{{10}}$$
Answer :
$$\frac{{27}}{{10}}$$
The given ellipse is $${x^2} + 9{y^2} = 9$$ or $$\frac{{{x^2}}}{{{3^2}}} + \frac{{{y^2}}}{{{1^2}}} = 1$$
So, that $$A\left( {3,\,0} \right)$$ and $$B\left( {0,\,1} \right)$$
$$\therefore $$ Equation of $$AB$$ is $$\frac{x}{3} + \frac{y}{1} = 1$$
or $$x + 3y - 3 = 0.....(1)$$
Also auxiliary circle of given ellipse is
$${x^2} + {y^2} = 9.....(2)$$
Solving equation (1) and (2), we get the point $$M$$ where line $$AB$$ meets the auxiliary circle.
Putting $$x=3-3y$$ from equation (1) in equation (2)
we get $${\left( {3 - 3y} \right)^2} + {y^2} = 9$$
$$\eqalign{
& \Rightarrow 9 - 18y + 9{y^2} + {y^2} = 9 \cr
& \Rightarrow 10{y^2} - 18y = 0 \cr
& \Rightarrow y = 0,\,\frac{9}{5}\,\,\,\,\,\,\, \Rightarrow x = 3,\,\frac{{ - 12}}{5} \cr} $$
Clearly $$M\left( {\frac{{ - 12}}{5},\,\frac{9}{5}} \right)$$
$$\therefore $$ Area of \[\Delta OAM = \frac{1}{2}\left| \begin{array}{l}
\,\,\,0\,\,\,\,\,\,\,\,\,\,0\,\,\,\,1\\
\,\,\,3\,\,\,\,\,\,\,\,\,\,0\,\,\,\,1\\
\frac{{ - 12}}{5}\,\,\,\frac{9}{5}\,\,\,1
\end{array} \right| = \frac{{27}}{{10}}\]
17.
The centre of the conic section $$14{x^2} - 4xy + 11{y^2} - 44x - 58y + 71 = 0$$ is :
A
$$\left( {2,\,3} \right)$$
B
$$\left( {2,\, - 3} \right)$$
C
$$\left( { - 2,\,3} \right)$$
D
$$\left( { - 2,\, - 3} \right)$$
Answer :
$$\left( {2,\,3} \right)$$
For centre, $$\frac{{\partial S}}{{\partial x}} = 0,\,\frac{{\partial S}}{{\partial y}} = 0,\,\,\, \Rightarrow 7x - y - 11 = 0,\,\,2x - 11y + 29 = 0.$$ Solve.
18.
If $$P$$ and $$Q$$ are the ends of a pair of conjugate diameters and $$C$$ is the centre of the ellipse $$4{x^2} + 9{y^2} = 36$$ then the area of the $$\Delta CPQ$$ is :
20.
The equation of the ellipse with its centre at $$\left( {1,\,2} \right),$$ focus at $$\left( {6,\,2} \right)$$ and passing through the point $$\left( {4,\,6} \right)$$ is $$\frac{{{{\left( {x - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{{b^2}}} = 1,$$ then :
A
$${a^2} = 1,\,{b^2} = 25$$
B
$${a^2} = 25,\,{b^2} = 20$$
C
$${a^2} = 20,\,{b^2} = 25$$
D
None of these
Answer :
None of these
Centre is $$\left( {1,\,2} \right)$$ and focus is $$\left( {6,\,2} \right),$$ hence the line joining the centre $$C$$ and the focus $$S$$ (i.e., the axis) is parallel to $$x$$-axis. Therefore, the equation must be of the form
$$\frac{{{{\left( {x - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{{b^2}}} = 1......\left( {\text{i}} \right)$$
The distance between the centre and the focus
$$CS = ae = 6 - 1 = 5$$
Also
$${b^2} = {a^2}\left( {1 - {e^2}} \right) = {a^2} - {a^2}{e^2} = {a^2} - 25$$
$$\therefore $$ The equation $$\left( {\text{i}} \right)$$ becomes
$$\frac{{{{\left( {x - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{{a^2} - 25}} = 1......\left( {{\text{ii}}} \right)$$
The point $$\left( {4,\,6} \right)$$ lies on it, therefore
$$\eqalign{
& \frac{{{{\left( {4 - 1} \right)}^2}}}{{{a^2}}} + \frac{{{{\left( {6 - 2} \right)}^2}}}{{{a^2} - 25}} = 1\, \Rightarrow {a^2} = 45 \cr
& \therefore \,{b^2} = 45 - 25 = 20 \cr} $$
The required equation is $$\frac{{{{\left( {x - 1} \right)}^2}}}{{45}} + \frac{{{{\left( {y - 2} \right)}^2}}}{{20}} = 1$$
$$\eqalign{
& 9ac - 9{a^2} - 2{c^2} > 9ac - 6{c^2}......\left( {\text{i}} \right) \cr
& {\text{Again }}3a < 2c \cr
& \Rightarrow 9ac < 6{c^2} \cr
& \Rightarrow 9ac - 6{c^2}......\left( {{\text{ii}}} \right) \cr
& {\text{From }}\left( {\text{i}} \right){\text{and}}\left( {{\text{ii}}} \right),\,\,9ac - 9{a^2} - 2{c^2} > 0 \cr} $$