Ellipse MCQ Questions & Answers in Geometry | Maths

Learn Ellipse MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

21. The eccentricity of an ellipse, with its centre at the origin, is $$\frac{1}{2}.$$  If one of the directrices is $$x = 4,$$  then the equation of the ellipse is :

A $$4{x^2} + 3{y^2} = 1$$
B $$3{x^2} + 4{y^2} = 12$$
C $$4{x^2} + 3{y^2} = 12$$
D $$3{x^2} + 4{y^2} = 1$$
Answer :   $$3{x^2} + 4{y^2} = 12$$

22. The foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$$   and the hyperbola $$\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$$    coincide. Then the value of $${{b^2}}$$  is-

A $$9$$
B $$1$$
C $$5$$
D $$7$$
Answer :   $$7$$

23. If the tangent to the ellipse $${x^2} + 4{y^2} = 16$$    at the point $$'\phi '$$ is a normal to the circle $${x^2} + {y^2} - 8x - 4y = 0$$     then $$\phi $$ is equal to :

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{3}$$
D $$ - \frac{\pi }{4}$$
Answer :   $$\frac{\pi }{2}$$

24. The ellipse $${E_1}:\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$    is inscribed in a rectangle $$R$$ whose sides are parallel to the coordinate axes. Another ellipse $${E_2}$$  passing through the point (0, 4) circumscribes the rectangle $$R.$$  The eccentricity of the ellipse $${E_2}$$  is-

A $$\frac{{\sqrt 2 }}{2}$$
B $$\frac{{\sqrt 3 }}{2}$$
C $$\frac{1}{2}$$
D $$\frac{3}{4}$$
Answer :   $$\frac{1}{2}$$

25. A point on the ellipse $${x^2} + 3{y^2} = 9,$$   where the tangent is parallel to the line $$y - x = 0,$$   is :

A $$\left( {\sqrt 3 ,\,\sqrt 2 } \right)$$
B $$\left( { - \frac{{3\sqrt 3 }}{2},\, - \frac{{\sqrt 3 }}{2}} \right)$$
C $$\left( { - \frac{{3\sqrt 3 }}{2},\,\frac{{\sqrt 3 }}{2}} \right)$$
D $$\left( { - \sqrt 3 ,\,\sqrt 2 } \right)$$
Answer :   $$\left( { - \frac{{3\sqrt 3 }}{2},\,\frac{{\sqrt 3 }}{2}} \right)$$

26. An ellipse is drawn by taking a diameter of the circle $${\left( {x - 1} \right)^2} + {y^2} = 1$$    as its semi-minor axis and a diameter of the circle $${x^2} + {\left( {y - 2} \right)^2} = 4$$    is semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :

A $$4{x^2} + {y^2} = 4$$
B $${x^2} + 4{y^2} = 8$$
C $$4{x^2} + {y^2} = 8$$
D $${x^2} + 4{y^2} = 16$$
Answer :   $${x^2} + 4{y^2} = 16$$

27. If two foci of an ellipse be $$\left( { - 2,\,0} \right)$$  and $$\left( {2,\,0} \right)$$  and its eccentricity is $$\frac{2}{3}$$ then the ellipse has the equation :

A $$5{x^2} + 9{y^2} = 45$$
B $$9{x^2} + 5{y^2} = 45$$
C $$5{x^2} + 9{y^2} = 90$$
D $$9{x^2} + 5{y^2} = 90$$
Answer :   $$5{x^2} + 9{y^2} = 45$$

28. The tangent at $$\left( {3\sqrt 3 \cos \,\theta ,\,\sin \,\theta } \right)$$    is drawn to the ellipse $$\frac{{{x^2}}}{{27}} + {y^2} = 1.$$   Then the value of $$\theta $$ such that the sum of intercepts on axes made by the tangent is minimum is :

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{6}$$
C $$\frac{\pi }{8}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{6}$$

29. Consider any point $$P$$ on the ellipse $$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1$$    in the first quadrant. Let $$r$$ and $$s$$ represent its distances from $$\left( {4,\,0} \right)$$  and $$\left( { - 4,\,0} \right)$$  respectively, then $$\left( {r + s} \right)$$  is equal to :

A $$10$$  units
B $$9$$ units
C $$8$$ units
D $$6$$ units
Answer :   $$10$$  units

30. The sum of the squares of the perpendiculars on any tangent to the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$   from two points on the minor axis each at a distance $$\sqrt {{a^2} - {b^2}} $$   from the centre is :

A $$2{a^2}$$
B $$2{b^2}$$
C $${a^2} + {b^2}$$
D $${a^2} - {b^2}$$
Answer :   $$2{a^2}$$