Ellipse MCQ Questions & Answers in Geometry | Maths
Learn Ellipse MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
21.
The eccentricity of an ellipse, with its centre at the origin, is $$\frac{1}{2}.$$ If one of the directrices is $$x = 4,$$ then the equation of the ellipse is :
22.
The foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ and the hyperbola $$\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$$ coincide. Then the value of $${{b^2}}$$ is-
23.
If the tangent to the ellipse $${x^2} + 4{y^2} = 16$$ at the point $$'\phi '$$ is a normal to the circle $${x^2} + {y^2} - 8x - 4y = 0$$ then $$\phi $$ is equal to :
A
$$\frac{\pi }{2}$$
B
$$\frac{\pi }{4}$$
C
$$\frac{\pi }{3}$$
D
$$ - \frac{\pi }{4}$$
Answer :
$$\frac{\pi }{2}$$
The tangent at $$\left( {4\cos \,\phi + 2\sin \,\phi } \right)$$ is $$4\cos \,\phi .x + 4.2\sin \,\phi .y = 16$$
Being normal, it passes through the centre $$\left( {4,\,2} \right)$$
So, $$16\cos \,\phi + 16\sin \,\phi = 16$$ or $$\cos \,\phi + \sin \,\phi = 1$$
It is satisfied by $$\phi = \frac{\pi }{2}$$
24.
The ellipse $${E_1}:\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$ is inscribed in a rectangle $$R$$ whose sides are parallel to the coordinate axes. Another ellipse $${E_2}$$ passing through the point (0, 4) circumscribes the rectangle $$R.$$ The eccentricity of the ellipse $${E_2}$$ is-
A
$$\frac{{\sqrt 2 }}{2}$$
B
$$\frac{{\sqrt 3 }}{2}$$
C
$$\frac{1}{2}$$
D
$$\frac{3}{4}$$
Answer :
$$\frac{1}{2}$$
As rectangle $$ABCD$$ circumscribed the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$$
$$\therefore A = \left( {3,\,2} \right)$$
Let the ellipse circumscribing the rectangle $$ABCD$$ is $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$
Given that it passes through $$\left( {a,\,4} \right)$$
$$\therefore {b^2} = 16$$
Also it passes through $$A\left( {3,\,2} \right)$$
$$\eqalign{
& \therefore \frac{9}{{{a^2}}} + \frac{4}{{16}} = 1\,\,\, \Rightarrow {a^2} = 12 \cr
& \therefore e = \sqrt {1 - \frac{{12}}{{16}}} = \sqrt {\frac{1}{4}} = \frac{1}{2} \cr} $$
25.
A point on the ellipse $${x^2} + 3{y^2} = 9,$$ where the tangent is parallel to the line $$y - x = 0,$$ is :
The point is $$\left( {{x_1},\,{y_1}} \right)$$ if $$x{x_1} + 3y{y_1} = 9$$ has the slope $$1,$$ i.e., $$ - \frac{{{x_1}}}{{3{y_1}}} = 1$$ and $$x_1^2 + 3y_1^2 = 9.$$ Solve the two equations.
26.
An ellipse is drawn by taking a diameter of the circle $${\left( {x - 1} \right)^2} + {y^2} = 1$$ as its semi-minor axis and a diameter of the circle $${x^2} + {\left( {y - 2} \right)^2} = 4$$ is semi-major axis. If the centre of the ellipse is at the origin and its axes are the coordinate axes, then the equation of the ellipse is :
A
$$4{x^2} + {y^2} = 4$$
B
$${x^2} + 4{y^2} = 8$$
C
$$4{x^2} + {y^2} = 8$$
D
$${x^2} + 4{y^2} = 16$$
Answer :
$${x^2} + 4{y^2} = 16$$
Equation of circle is $${\left( {x - 1} \right)^2} + {y^2} = 1$$
$$ \Rightarrow $$ radius $$=1$$ and diameter $$=2$$
$$\therefore $$ Length of semi-minor axis is $$2$$
Equation of circle is $${x^2} + {\left( {y - 2} \right)^2} = 4 = {\left( 2 \right)^2}$$
$$ \Rightarrow $$ radius $$=2$$ and diameter $$=4$$
$$\therefore $$ Length of semi major axis is $$4$$
We know, equation of ellipse is given by
$$\eqalign{
& \frac{{{x^2}}}{{{{\left( {Major\,axis} \right)}^2}}} + \frac{{{y^2}}}{{{{\left( {Minor\,axis} \right)}^2}}} = 1 \cr
& \Rightarrow \frac{{{x^2}}}{{{{\left( 4 \right)}^2}}} + \frac{{{y^2}}}{{{{\left( 2 \right)}^2}}} = 1 \cr
& \Rightarrow \frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{4} = 1 \cr
& \Rightarrow {x^2} + 4{y^2} = 16 \cr} $$
27.
If two foci of an ellipse be $$\left( { - 2,\,0} \right)$$ and $$\left( {2,\,0} \right)$$ and its eccentricity is $$\frac{2}{3}$$ then the ellipse has the equation :
A
$$5{x^2} + 9{y^2} = 45$$
B
$$9{x^2} + 5{y^2} = 45$$
C
$$5{x^2} + 9{y^2} = 90$$
D
$$9{x^2} + 5{y^2} = 90$$
Answer :
$$5{x^2} + 9{y^2} = 45$$
Here, the situation is standard. The distance between foci $$ = 2ae = 4$$ and $$e = \frac{2}{3}$$
$$ \Rightarrow \,\,a = 3$$ So, $${b^2} = {a^2}\left( {1 - {e^2}} \right) = 9.\left( {1 - \frac{4}{9}} \right) = 5$$
28.
The tangent at $$\left( {3\sqrt 3 \cos \,\theta ,\,\sin \,\theta } \right)$$ is drawn to the ellipse $$\frac{{{x^2}}}{{27}} + {y^2} = 1.$$ Then the value of $$\theta $$ such that the sum of intercepts on axes made by the tangent is minimum is :
A
$$\frac{\pi }{3}$$
B
$$\frac{\pi }{6}$$
C
$$\frac{\pi }{8}$$
D
$$\frac{\pi }{4}$$
Answer :
$$\frac{\pi }{6}$$
The tangent is $$\frac{{3\sqrt 3 \cos \,\phi .x}}{{27}} + \frac{{\sin \,\phi .y}}{1} = 1{\text{ or }}\frac{x}{{3\sqrt 3 \sec \,\theta }} + \frac{y}{{{\text{cosec}}\,\theta }} = 1$$
$$\therefore \,\,z = $$ sum of intercepts on axes $$ = 3\sqrt 3 \sec \,\theta + {\text{cosec}}\,\theta $$
For maximum or minimum, $$\frac{{dz}}{{d\theta }} = 0\,\,\, \Rightarrow {\cot ^3}\theta = 3\sqrt 3 \,\,\, \Rightarrow \cot \,\theta = \sqrt 3 \,\,\, \Rightarrow \theta = \frac{\pi }{6}$$
29.
Consider any point $$P$$ on the ellipse $$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{9} = 1$$ in the first quadrant. Let $$r$$ and $$s$$ represent its distances from $$\left( {4,\,0} \right)$$ and $$\left( { - 4,\,0} \right)$$ respectively, then $$\left( {r + s} \right)$$ is equal to :
30.
The sum of the squares of the perpendiculars on any tangent to the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ from two points on the minor axis each at a distance $$\sqrt {{a^2} - {b^2}} $$ from the centre is :
A
$$2{a^2}$$
B
$$2{b^2}$$
C
$${a^2} + {b^2}$$
D
$${a^2} - {b^2}$$
Answer :
$$2{a^2}$$
$$\sqrt {{a^2} - {b^2}} = \pm ae\left( {0,\,ae} \right)$$
So, the points are $$\left( {ae,\,0} \right)$$ and $$\left( {0,\, - ae} \right)$$
Let $$\frac{x}{a}\cos \,\theta + \frac{y}{b}\sin \,\theta = 1$$ be a tangent then sum of squares of perpendicular from these points is
$$\eqalign{
& = \frac{{{{\left( {1 - \frac{{ae}}{b}\sin \,\theta } \right)}^2} + {{\left( {1 + \frac{{ae}}{b}\sin \,\theta } \right)}^2}}}{{\frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}}}} \cr
& = \frac{{2\left( {1 + \frac{{{a^2}{e^2}}}{{{b^2}}}{{\sin }^2}\theta } \right)}}{{\frac{{{{\cos }^2}\theta }}{{{a^2}}} + \frac{{{{\sin }^2}\theta }}{{{b^2}}}}} \cr
& = 2{a^2}\left( {\frac{{{b^2} + \left( {{a^2} - {b^2}} \right){{\sin }^2}\theta }}{{{b^2}\left( {1 - \sin \,\theta } \right) + {a^2}{{\sin }^2}\theta }}} \right) \cr
& = 2{a^2} \cr} $$