Ellipse MCQ Questions & Answers in Geometry | Maths

Learn Ellipse MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

41. Which of the following points is an exterior point of the ellipse $$16{x^2} + 9{y^2} - 16x - 32 = 0?$$

A $$\left( {\frac{1}{2},\,2} \right)$$
B $$\left( {\frac{1}{4},\,1} \right)$$
C $$\left( {3,\, - 2} \right)$$
D none of these
Answer :   $$\left( {3,\, - 2} \right)$$

42. The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$    meets the $$x$$-axis at $$Q.$$  If $$M$$ is the mid point of the line segment $$PQ,$$  then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points-

A $$\left( { \pm \frac{{3\sqrt 5 }}{2},\, \pm \frac{2}{7}} \right)$$
B $$\left( { \pm \frac{{3\sqrt 5 }}{2},\, \pm \sqrt {\frac{{19}}{4}} } \right)$$
C $$\left( { \pm 2\sqrt 3 ,\, \pm \frac{1}{7}} \right)$$
D $$\left( { \pm 2\sqrt 3 ,\, \pm \frac{{4\sqrt 3 }}{7}} \right)$$
Answer :   $$\left( { \pm 2\sqrt 3 ,\, \pm \frac{1}{7}} \right)$$

43. If the eccentricity of the hyperbola $${x^2} - {y^2}{\sec ^2}\theta = 4$$     is $$\sqrt 3 $$  times the eccentricity of the ellipse $${x^2}{\sec ^2}\theta + {y^2} = 16,$$     then the value of $$\theta $$ equals :

A $$\frac{\pi }{6}$$
B $$\frac{{3\pi }}{4}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{{3\pi }}{4}$$

44. If a point $$P\left( {x,\,y} \right)$$  moves along the ellipse $$\frac{{{x^2}}}{{25}} + \frac{{{y^2}}}{{16}} = 1$$   and if $$C$$ is the centre of the ellipse, then, $$4\,\max \left\{ {CP} \right\} + 5\,\min \left\{ {CP} \right\} = \,?$$

A $$25$$
B $$40$$
C $$45$$
D $$54$$
Answer :   $$40$$

45. If the focal distance of an end of the minor axis of any ellipse (referred to its axis as the axes of $$x$$ and $$y$$ respectively) is $$k$$ and the distance between the foci is $$2h,$$  then its equation is :

A $$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{k^2} + {h^2}}} = 1$$
B $$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{h^2} - {k^2}}} = 1$$
C $$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{k^2} - {h^2}}} = 1$$
D $$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{h^2}}} = 1$$
Answer :   $$\frac{{{x^2}}}{{{k^2}}} + \frac{{{y^2}}}{{{k^2} - {h^2}}} = 1$$

46. The radius of the circle passing through the foci of the ellipse $$\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1,$$   and having its centre at $$\left( {0,\,3} \right)$$  is-

A $$4$$
B $$3$$
C $$\sqrt {\frac{1}{2}} $$
D $$\frac{7}{2}$$
Answer :   $$4$$

47. The area (in square units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $$\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1,$$    is :

A $$\frac{27}{2}$$
B $$27$$
C $$\frac{27}{4}$$
D $$18$$
Answer :   $$27$$

48. Let $$d$$ be the perpendicular distance from the centre of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$   to the tangent drawn at a point $$P$$ on the ellipse. If $${F_1}$$ and $${F_2}$$ be the foci of the ellipse, then $${\left( {P{F_1} - P{F_2}} \right)^2} = ?$$

A $$4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$
B $${a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$
C $$4{b^2}\left( {1 - \frac{{{a^2}}}{{{d^2}}}} \right)$$
D $${b^2}\left( {1 - \frac{{{a^2}}}{{{d^2}}}} \right)$$
Answer :   $$4{a^2}\left( {1 - \frac{{{b^2}}}{{{d^2}}}} \right)$$

49. An ellipse having foci at $$\left( {3,\,1} \right)$$  and $$\left( {1,\,1} \right)$$  passes through the point $$\left( {1,\,3} \right).$$   Its eccentricity is :

A $$\sqrt 2 - 1$$
B $$\sqrt 3 - 1$$
C $$\frac{1}{2}\left( {\sqrt 2 - 1} \right)$$
D $$\frac{1}{2}\left( {\sqrt 3 - 1} \right)$$
Answer :   $$\sqrt 2 - 1$$

50. If $${\left( {\frac{x}{a}} \right)^2} + {\left( {\frac{y}{b}} \right)^2} = 1\left( {a > b} \right)$$      and $${x^2} - {y^2} = {c^2}$$   cut at right angles, then :

A $${a^2} + {b^2} = 2{c^2}$$
B $${b^2} - {a^2} = 2{c^2}$$
C $${a^2} - {b^2} = 2{c^2}$$
D $${a^2} - {b^2} = {c^2}$$
Answer :   $${a^2} - {b^2} = 2{c^2}$$