Hyperbola MCQ Questions & Answers in Geometry | Maths
Learn Hyperbola MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
21.
What are the points of intersection of the curve $$4{x^2} - 9{y^2} = 1$$ with its conjugate axis ?
A
$$\left( {\frac{1}{2},\,0} \right){\text{ and }}\left( { - \frac{1}{2},\,0} \right)$$
B
$$\left( {0,\,2} \right){\text{ and }}\left( {0,\, - 2} \right)$$
C
$$\left( {0,\,3} \right){\text{ and }}\left( {0,\, - 3} \right)$$
D
No such point exists
Answer :
No such point exists
The given equation of curve is
$$\eqalign{
& 4{x^2} - 9{y^2} = 1 \cr
& \Rightarrow \frac{{{x^2}}}{{\frac{1}{4}}} - \frac{{{y^2}}}{{\frac{1}{9}}} = 1 \cr} $$
This is an equation of a hyperbola which does not intersect with conjugate axes.
Hence, no point of intersection exists.
22.
If in a hyperbola the eccentricity is $$\sqrt 3 ,$$ and the distance between the foci is 9 then the equation of the hyperbola in the standard form is :
24.
For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$ which of the following remains constant with change in $$'\alpha \,'$$
A
abscissae of vertices
B
abscissae of foci
C
eccentricity
D
directrix
Answer :
abscissae of foci
The given equation of hyperbola is
$$\eqalign{
& \frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1 \cr
& \Rightarrow a = \cos \,\alpha ,\,\,\,b = \sin \,\alpha \cr
& \Rightarrow e = \sqrt {1 + \frac{{{b^2}}}{{{a^2}}}} = \sqrt {1 + {{\tan }^2}\alpha } = \sec \,\alpha \cr
& \Rightarrow ae = 1 \cr} $$
$$\therefore $$ foci $$\left( { \pm 1,\,0} \right)$$
$$\therefore $$ foci remain constant with respect to $$\alpha .$$
25.
The eccentricity of the hyperbola whose latus rectum is $$8$$ and conjugate axis is equal to half the distance between the foci is :
A
$$\frac{4}{3}$$
B
$$\frac{4}{{\sqrt 3 }}$$
C
$$\frac{2}{{\sqrt 3 }}$$
D
none of these
Answer :
$$\frac{2}{{\sqrt 3 }}$$
The standard equation of hyperbola is $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$
Latus rectum $$ = \frac{{2{b^2}}}{a},$$
Conjugate axis $$ = 2b,$$
Distance between the foci $$= 2 ae$$
According to the question,
$$\eqalign{
& \frac{{2{b^2}}}{a} = 8......\left( {\text{i}} \right) \cr
& 2b = \frac{1}{2}\left( {2ae} \right) \Rightarrow b = \frac{{ae}}{2}......\left( {{\text{ii}}} \right) \cr} $$
From equation $$\left( {\text{i}} \right)\& \left( {{\text{ii}}} \right),$$
$$\eqalign{
& \frac{2}{a}{\left( {\frac{{ae}}{2}} \right)^2} = 8 \cr
& \Rightarrow 2.\frac{{{a^2}{e^2}}}{{4a}} = 8 \cr
& \Rightarrow a{e^2} = 16......\left( {{\text{iii}}} \right) \cr} $$
From equation $$\left( {\text{i}} \right),\,\,{b^2} = 4a$$
Using $${b^2} = {a^2}\left( {{e^2} - 1} \right)$$ we get
$$\eqalign{
& \left( {4a} \right) = {a^2}\left( {{e^2} - 1} \right) \cr
& \Rightarrow 4 = \frac{{16}}{{{e^2}}}\left( {{e^2} - 1} \right) \cr
& \Rightarrow 16 - \frac{{16}}{{{e^2}}} = 4 \cr
& \Rightarrow \frac{{16}}{{{e^2}}} = 12 \cr
& \therefore \,e = \frac{2}{{\sqrt 3 }}. \cr} $$
26.
Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$ and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$ where $$\theta + \phi = \frac{\pi }{2},$$ be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$ If $$\left( {h,\,k} \right)$$ is the point of intersection of the normals at $$P$$ and $$Q,$$ then $$kz$$ is equal to :
A
$$\frac{{{a^2} + {b^2}}}{a}$$
B
$$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C
$$\frac{{{a^2} + {b^2}}}{b}$$
D
$$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Equation of the normal to the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$ at the point $$\left( {a\,\sec \,\alpha ,\,b\,\tan \,\alpha } \right)$$ is given by $$ax\,\cos \,\alpha + by\,\cot \,\alpha = {a^2} + {b^2}$$
Normals at $$\theta ,\,\phi $$ are
\[\left\{ \begin{array}{l}
ax\,\cos \,\theta + by\,\cot \,\theta = {a^2} + {b^2}\\
ax\,\cos \,\phi + by\,\cot \,\phi = {a^2} + {b^2}
\end{array} \right.\]
where $$\phi = \frac{\pi }{2} - \theta $$ and these passes through $$\left( {h,\,k} \right)$$
$$\eqalign{
& \therefore \,ah\,\cos \,\theta + bk\,\cot \,\theta = {a^2} + {b^2} \cr
& \Rightarrow ah\,\sin \,\theta + bk\,\tan \,\theta = {a^2} + {b^2} \cr} $$
Eliminating $$h,\,\,bk\left( {\cot \,\theta \,\sin \,\theta - \tan \,\theta \,\cos \,\theta } \right)$$
$$ = \left( {{a^2} + {b^2}} \right)\left( {\sin \,\theta - \cos \,\theta } \right)\,{\text{or }}k = - \frac{{\left( {{a^2} + {b^2}} \right)}}{b}$$
27.
If the coordinates of four concyclic points on the rectangular hyperbola $$xy = {c^2}$$ are $$\left( {c{t_{\text{i}}},\,\frac{c}{{{t_{\text{i}}}}}} \right),\,{\text{i}} = 1,\,2,\,3,\,4$$ then :
A
$${t_1}{t_2}{t_3}{t_4} = - 1$$
B
$${t_1}{t_2}{t_3}{t_4} = 1$$
C
$${t_1}{t_3} = {t_2}{t_4}$$
D
$${t_1} + {t_2} + {t_3} + {t_4} = {c^2}$$
Answer :
$${t_1}{t_2}{t_3}{t_4} = 1$$
Let the points lie on the circle $${x^2} + {y^2} + 2gx + 2fy + 2fy + k = 0,$$ then
$$\eqalign{
& {c^2}t_{\text{i}}^2 + \frac{{{c^2}}}{{t_{\text{i}}^2}} + 2gc{t_{\text{i}}} + 2f\frac{c}{{{t_{\text{i}}}}} + k = 0 \cr
& \Rightarrow {c^2}t_{\text{i}}^4 + 2gct_{\text{i}}^3 + kt_{\text{i}}^3 + 2fc{t_{\text{i}}} + {c^2} = 0 \cr} $$
Its roots are $${t_1},\,{t_2},\,{t_3},\,{t_4}$$ so $${t_1}{t_2}{t_3}{t_4} = \frac{{{c^2}}}{{{c^2}}} = 1$$
Also, $${t_1} + {t_2} + {t_3} + {t_4} = - \frac{{2gc}}{{{c^2}}} = - \frac{{2g}}{c}$$
28.
The hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$ passes through the point $$\left( {3\sqrt 5 ,\,1} \right)$$ and the length of its latus rectum is $$\frac{4}{3}$$ units. The length of the conjugate axis is :
29.
The eccentricity of the hyperbola whose length of the latus rectum is equal to $$8$$ and the length of its conjugate axis is equal to half of the distance between its foci, is :