Parabola MCQ Questions & Answers in Geometry | Maths

Learn Parabola MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

51. Angle between the tangents to the curve $$y = {x^2} - 5x + 6$$    at the points $$\left( {2,\,0} \right)$$  and $$\left( {3,\,0} \right)$$  is-

A $$\pi $$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{6}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{2}$$

52. Let $$\left( {x,\,y} \right)$$  be any point on the parabola $${y^2} = 4x.$$   Let $$P$$ be the point that divides the line segment from $$\left( {0,\,0} \right)$$ to $$\left( {x,\,y} \right)$$  in the ratio $$1 : 3.$$  Then the locus of $$P$$ is-

A $${x^2} = y$$
B $${y^2} = 2x$$
C $${y^2} = x$$
D $${x^2} = 2y$$
Answer :   $${y^2} = x$$

53. A ray of light moving parallel to the $$x$$-axis gets reflected from a parabolic mirror whose equation is $${\left( {y - 2} \right)^2} = 4\left( {x + 1} \right).$$     After reflection, the ray must pass through the point :

A $$\left( {0,\,2} \right)$$
B $$\left( {2,\,0} \right)$$
C $$\left( {0,\, - 2} \right)$$
D $$\left( {-1,\,2} \right)$$
Answer :   $$\left( {0,\,2} \right)$$

54. If $$a \ne 0$$  and the line $$2bx+3cy+4d=0$$    passes through the points of intersection of the parabolas $${y^2} = 4ax$$   and $${x^2} = 4ay,$$   then-

A $${d^2} + {\left( {3b - 2c} \right)^2} = 0$$
B $${d^2} + {\left( {3b + 2c} \right)^2} = 0$$
C $${d^2} + {\left( {2b - 3c} \right)^2} = 0$$
D $${d^2} + {\left( {2b + 3c} \right)^2} = 0$$
Answer :   $${d^2} + {\left( {2b + 3c} \right)^2} = 0$$

55. The focal chord to $${y^2} = 16x$$   is tangent to $${\left( {x - 6} \right)^2} + {y^2} = 2,$$    then the possible values of the slope of this chord, are-

A $$\left\{ { - 1,\,1} \right\}$$
B $$\left\{ { - 2,\,2} \right\}$$
C $$\left\{ { - 2,\, - \frac{1}{2}} \right\}$$
D $$\left\{ {2,\, - \frac{1}{2}} \right\}$$
Answer :   $$\left\{ { - 1,\,1} \right\}$$

56. The common tangents to the circle $${x^2} + {y^2} = 2$$   and the parabola $${y^2} = 8x$$   touch the circle at the points $$P, \,Q$$  and the parabola at the points $$R,\,S.$$  Then the area of the quadrilateral $$PQRS$$   is-

A $$3$$
B $$6$$
C $$9$$
D $$15$$
Answer :   $$15$$

57. The length of the latus rectum of the parabola $$x = a{y^2} + by + c$$    is :

A $$\frac{a}{4}$$
B $$\frac{a}{3}$$
C $$\frac{1}{a}$$
D $$\frac{1}{{4a}}$$
Answer :   $$\frac{1}{a}$$

58. If the line $$y = x + k$$   is a normal to the parabola $${y^2} = 4x$$  then $$k$$ can have the value :

A $$2\sqrt 2 $$
B $$4$$
C $$ - 3$$
D $$3$$
Answer :   $$ - 3$$

59. If $$y + b = {m_1}\left( {x + a} \right)$$    and $$y + b = {m_2}\left( {x + a} \right)$$    are two tangents to the parabola $${y^2} = 4ax$$   then :

A $${m_1} + {m_2} = 0$$
B $${m_1}{m_2} = 1$$
C $${m_1}{m_2} = - 1$$
D none of these
Answer :   $${m_1}{m_2} = - 1$$

60. The equation of the directrix of the parabola $${y^2} + 4y + 4x + 2 = 0$$     is-

A $$x = - 1$$
B $$x = 1$$
C $$x = - \frac{3}{2}$$
D $$x = \frac{3}{2}$$
Answer :   $$x = \frac{3}{2}$$