Parabola MCQ Questions & Answers in Geometry | Maths
Learn Parabola MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
The ends of a line segment are $$P\left( {1,\,3} \right)$$ and $$Q\left( {1,\,1} \right).\,R$$ is a point on the line segment $$PQ$$ such that $$PR:QR = 1:\lambda .$$ If $$R$$ is an interior point of the
parabola $${y^2} = 4x$$ then :
A
$$\lambda \, \in \,\left( {0,\,1} \right)$$
B
$$\lambda \, \in \,\left( { - \frac{3}{5},\,1} \right)$$
C
$$\lambda \, \in \,\left( {\frac{1}{2},\,\frac{3}{5}} \right)$$
$$R = \left( {1,\,\frac{{1 + 3\lambda }}{{1 + \lambda }}} \right).$$ It is an interior point of $${y^2} - 4x = 0$$ if $${\left( {\frac{{1 + 3\lambda }}{{1 + \lambda }}} \right)^2} - 4 < 0$$
Therefore, $$ - \frac{3}{5} < \lambda < 1.$$ But $$\lambda > 0.$$
72.
The slope of the line touching both the parabolas $${y^2} = 4x$$ and $${x^2} = - 32y$$ is-
A
$$\frac{1}{8}$$
B
$$\frac{2}{3}$$
C
$$\frac{1}{2}$$
D
$$\frac{3}{2}$$
Answer :
$$\frac{1}{2}$$
Let tangent to $${y^2} = 4x$$ be $$y = mx + \frac{1}{m}$$
Since this is also tangent to $${x^2} = - 32y$$
$$\therefore {x^2} = - 32\left( {mx + \frac{1}{m}} \right)\,\,\, \Rightarrow {x^2} + 32mx + \frac{{32}}{m} = 0$$
Now, $$D=0$$
$$\eqalign{
& {\left( {32} \right)^2} - 4\left( {\frac{{32}}{m}} \right) = 0 \cr
& \Rightarrow {m^3} = \frac{4}{{32}} \cr
& \Rightarrow {m^3} = \frac{1}{8} \cr
& \Rightarrow m = \frac{1}{2} \cr} $$
73.
The focus of the parabola $${y^2} - x - 2y + 2 = 0$$ is :
A
$$\left( {\frac{5}{4},\,1} \right)$$
B
$$\left( {\frac{1}{4},\,0} \right)$$
C
$$\left( {1,\,1} \right)$$
D
none of these
Answer :
$$\left( {\frac{5}{4},\,1} \right)$$
$${y^2} - 2y + 1 = x - 1{\text{ or }}{\left( {y - 1} \right)^2} = x - 1$$
Putting $$x - 1 = X,\,\,y - 1 = Y$$ the equation becomes $${Y^2} = X,$$ i.e., $${Y^2} = 4.\frac{1}{4}.X.$$ So, the focus $$ = {\left( {\frac{1}{4},\,0} \right)_{X,\,Y}} = \left( {\frac{5}{4},\,1} \right).$$
74.
Let $$P$$ be the point on the parabola, $${y^2} = 8x$$ which is at a minimum distance from the centre $$C$$ of the circle, $${x^2} + {\left( {y + 6} \right)^2} = 1.$$ Then the equation of the circle, passing through $$C$$ and having its centre at $$P$$ is:
A
$${x^2} + {y^2} - \frac{x}{4} + 2y - 24 = 0$$
B
$${x^2} + {y^2} - 4x + 9y + 18 = 0$$
C
$${x^2} + {y^2} - 4x + 8y + 12 = 0$$
D
$${x^2} + {y^2} - x + 4y - 12 = 0$$
Answer :
$${x^2} + {y^2} - 4x + 8y + 12 = 0$$
Minimum distance $$ \Rightarrow $$ perpendicular distance
Equation of normal at $$p\left( {2{t^2},\,4t} \right)$$
$$y = - tx + 4t + 2{t^3}$$
It passes through $$C\left( {0,\, - 6} \right)\,\, \Rightarrow {t^3} + 2t + 3 = 0\,\, \Rightarrow t = - 1$$
Centre of new circle $$ = P\left( {2{t^2},\,4t} \right) = P\left( {2,\, - 4} \right)$$
Radius $$ = PC = \sqrt {{{\left( {2 - 0} \right)}^2} + {{\left( { - 4 + 6} \right)}^2}} = 2\sqrt 2 $$
$$\therefore $$ Equation of the circle is
$$\eqalign{
& {\left( {x - 2} \right)^2} + {\left( {y + 4} \right)^2} = {\left( {2\sqrt 2 } \right)^2} \cr
& \Rightarrow {x^2} + {y^2} - 4x + 8y + 12 = 0 \cr} $$
75.
The number of distinct normals that can be drawn from $$\left( { - 2,\,1} \right)$$ to the parabola $${y^2} - 4x - 2y - 3 = 0$$ is :
A
1
B
2
C
3
D
0
Answer :
1
Here, $${y^2} - 2y + 1 = 4\left( {x + 1} \right){\text{ or }}{\left( {y - 1} \right)^2} = 4\left( {x + 1} \right)$$
So, the axis is $$y - 1 = 0.$$ Also $$\left( { - 2,\,1} \right)$$ lies on the axis, and it is exterior to the parabola because $${1^2} - 4\left( { - 2} \right) - 2\left( 1 \right) - 3 > 0.$$ Hence, only one normal is possible.
76.
A tangent to the parabola $${y^2} = 8x,$$ which makes an angle of $${45^ \circ }$$ with the straight line $$y = 3x + 5$$ is :
A
$$2x - y + 1 = 0$$
B
$$2x + y + 1 = 0$$
C
$$x - 2y + 8 = 0$$
D
Both (B) and (C)
Answer :
Both (B) and (C)
We know the tangent to the parabola
$${y^2} = 4ax$$ at $$\left( {a{t^2},\,2at} \right)$$ is $$ty = x + a{t^2}.$$
Here $$a = 2$$
So, the tangent at $$\left( {2{t^2},\,4t} \right)$$ to the parabola
$${y^2} = 8x$$ is $$ty = x + 2{t^2}......\left( {\text{i}} \right)$$
$$'m'$$ of $$\left( {\text{i}} \right)$$ is $$\frac{1}{t};\left( {\text{i}} \right)$$ makes $${45^ \circ }$$ with $$y = 3x + 5$$ if
$$\eqalign{
& \tan \,{45^ \circ } = \left| {\frac{{\frac{1}{t} - 3}}{{1 + \frac{1}{t}.3}}} \right| = \left| {\frac{{1 - 3t}}{{t + 3}}} \right| \cr
& \therefore \,1 = \left| {\frac{{1 - 3t}}{{t + 3}}} \right|{\text{; or }}\frac{{1 - 3t}}{{t + 3}} = \pm 1\,;{\text{ or }}1 - 3t = t + 3,\, - t - 3 \cr
& \therefore \,4t = - 2{\text{ or }}2t = 4 \cr
& \therefore \,t = - \frac{1}{2}{\text{ or }}2 \cr} $$
Putting in $$\left( {\text{i}} \right),$$ the tangents have the equations
$$\eqalign{
& - \frac{1}{2}y = x + 2.\frac{1}{4}{\text{ i}}{\text{.e}}{\text{., }}2x + y + 1 = 0 \cr
& {\text{and }}2y = x + 2.4{\text{ i}}{\text{.e}}{\text{., }}x - 2y + 8 = 0 \cr} $$
77.
The equation of the common tangent to the equal parabolas $${y^2} = 4ax$$ and $${x^2} = 4ay$$ is :
A
$$x + y + a = 0$$
B
$$x + y = a$$
C
$$x - y = a$$
D
none of these
Answer :
$$x + y + a = 0$$
Any tangent to $${y^2} = 4ax$$ is $$y = mx + \frac{a}{m}.$$ It touches $${x^2} = 4ay$$ if $${x^2} = 4a\left( {mx + \frac{a}{m}} \right),$$ i.e., $${x^2} - 4amx - \frac{{4{a^2}}}{m} = 0$$ has equal roots.
So, $${m^3} + 1 = 0,$$ i.e., $$m = - 1.$$ Hence, the common tangent is $$y = - x - a.$$
78.
If the tangent at $$\left( {1,\,7} \right)$$ to the curve $${x^2} = y - 6$$ touches the circle $${x^2} + {y^2} + 16x + 12y + c = 0$$ then the value of $$c$$ is :
A
$$185$$
B
$$85$$
C
$$95$$
D
$$195$$
Answer :
$$95$$
Equation of tangent at $$\left( {1,\,7} \right)$$ to $${x^2} = y - 6$$ is $$2x - y + 5 = 0.$$
Now, perpendicular from centre $$O\left( { - 8,\, - 6} \right)$$ to $$2x-y+5=0$$ should be equal to radius of the circle
$$\eqalign{
& \therefore \left| {\frac{{ - 16 + 6 + 5}}{{\sqrt 5 }}} \right| = \sqrt {64 + 36 - C} \cr
& \Rightarrow \sqrt 5 = \sqrt {100 - c} \cr
& \Rightarrow c = 95 \cr} $$
79.
The vertex of the parabola $${y^2} = 8x$$ is at the centre of a circle and the parabola cuts the circle at the ends of its latus rectum. Then the equation of the circle is :
A
$${x^2} + {y^2} = 4$$
B
$${x^2} + {y^2} = 20$$
C
$${x^2} + {y^2} = 80$$
D
none of these
Answer :
$${x^2} + {y^2} = 20$$
Vertex $$ = \left( {0,\,0} \right)$$ The ends of latus rectum are $$\left( {2,\,4} \right)\left( {2,\, - 4} \right)$$
$$\therefore $$ centre $$ = \left( {0,\,0} \right)$$ radius $$ = \sqrt {{2^2} + {4^2}} = \sqrt {20} $$
80.
The equation of the axis of the parabola $$9{y^2} - 16x - 12y - 57 = 0$$ is :
A
$$2x = 3$$
B
$$y = 3$$
C
$$3y = 2$$
D
$$x + 3y = 3$$
Answer :
$$3y = 2$$
$$9{y^2} - 12y + 4 = 16x + 61\,\,{\text{or }}{\left( {3y - 2} \right)^2} = 4.4\left( {x + \frac{{61}}{{16}}} \right)$$
Therefore, the equation of the axis is $$3y - 2 = 0.$$