Straight Lines MCQ Questions & Answers in Geometry | Maths

Learn Straight Lines MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

91. If a vertex of a triangle is (1, 1) and the mid points of two sides through this vertex are ($$-$$1, 2) and (3, 2) then the centroid of the triangle is-

A $$\left( { - 1,\,\frac{7}{3}} \right)$$
B $$\left( {\frac{{ - 1}}{3},\,\frac{7}{3}} \right)$$
C $$\left( {1,\,\frac{7}{3}} \right)$$
D $$\left( {\frac{{1}}{3},\,\frac{7}{3}} \right)$$
Answer :   $$\left( {1,\,\frac{7}{3}} \right)$$

92. The straight lines $$x + 2y - 9 = 0,\,3x + 5y - 5 = 0$$       and $$ax + by = 1$$   are concurrent if the straight line $$35x - 22y + 1 = 0$$    passes through :

A $$\left( {a,\,b} \right)$$
B $$\left( {b,\,a} \right)$$
C $$\left( {a,\, - b} \right)$$
D $$\left( { - a,\,b} \right)$$
Answer :   $$\left( {a,\,b} \right)$$

93. If the pair of lines $$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$        intersect on the $$y$$-axis then-

A $$2fgh = b{g^2} + c{h^2}$$
B $$b{g^2} \ne c{h^2}$$
C $$abc = 2fgh$$
D none of these
Answer :   $$2fgh = b{g^2} + c{h^2}$$

94. Three distinct points $$A, \,B$$  and $$C$$ are given in the 2-dimensional coordinates plane such that the ratio of the distance of any one of them from the point (1, 0) to the 1 distance from the point ($$-$$1, 0) is equal to $$\frac{1}{3}.$$  Then the circumcenter of the triangle $$ABC$$  is at the point :

A $$\left( {\frac{5}{4},\,0} \right)$$
B $$\left( {\frac{5}{2},\,0} \right)$$
C $$\left( {\frac{5}{3},\,0} \right)$$
D $$\left( {0,\,0} \right)$$
Answer :   $$\left( {\frac{5}{4},\,0} \right)$$

95. The number of integral points (integral point means both the coordinates should be integer) exactly in the interior of the triangle with vertices (0, 0), (0, 21) and (21, 0), is-

A 133
B 190
C 233
D 105
Answer :   190

96. A line which makes an acute angle $$\theta $$ with the positive direction of $$x$$-axis is drawn through the point $$P\left( {3,\,4} \right)$$  to meet the line $$x = 6$$  at $$R$$ and $$y = 8$$  at $$S,$$ then :

A $$PR = 3\,\cos \,\theta $$
B $$PS = - 4\,{\text{cosec}}\,\theta $$
C $$PR - PS = \frac{{2\left( {3\,\sin \,\theta + 4\,\cos \,\theta } \right)}}{{\sin \,2\theta }}$$
D $$\frac{9}{{{{\left( {PR} \right)}^2}}} + \frac{{16}}{{{{\left( {PS} \right)}^2}}} = 1$$
Answer :   $$\frac{9}{{{{\left( {PR} \right)}^2}}} + \frac{{16}}{{{{\left( {PS} \right)}^2}}} = 1$$

97. If $${x_1},\,{x_2},\,{x_3}$$   and $${y_1},\,{y_2},\,{y_3}$$   are both in G.P. with the same common ratio, then the points $$\left( {{x_1},\,{y_1}} \right),\,\left( {{x_2},\,{y_2}} \right)$$    and $$\left( {{x_3},\,{y_3}} \right)$$

A are vertices of a triangle
B lie on a straight line
C lie on an ellipse
D lie on a circle
Answer :   lie on a straight line

98. The line $$x + 3y - 2 = 0$$    bisects the angle between a pair of straight lines of which one has equation $$x - 7y + 5 = 0.$$    The equation of the other line is :

A $$3x + 3y - 1 = 0$$
B $$x - 3y + 2 = 0$$
C $$5x + 5y - 3 = 0$$
D None of these
Answer :   $$5x + 5y - 3 = 0$$

99. The combined equation of the pair of lines through the point $$\left( {1,\,0} \right)$$  and parallel to the lines represented by $$2{x^2} - xy - {y^2} = 0$$    is :

A $$2{x^2} - xy - 2{y^2} + 4x - y = 6$$
B $$2{x^2} - xy - {y^2} - 4x - y + 2 = 0$$
C $$2{x^2} - xy - {y^2} - 4x + y + 2 = 0$$
D none of these
Answer :   $$2{x^2} - xy - {y^2} - 4x + y + 2 = 0$$

100. The incentre of the triangle with vertices $$\left( {1,\,\sqrt 3 } \right),\,\left( {0,\,0} \right)$$    and $$\left( {2,\,0} \right)$$  is-

A $$\left( {1,\,\frac{{\sqrt 3 }}{2}} \right)$$
B $$\left( {\frac{2}{3},\,\frac{1}{{\sqrt 3 }}} \right)$$
C $$\left( {\frac{2}{3},\,\frac{{\sqrt 3 }}{2}} \right)$$
D $$\left( {1,\,\frac{1}{{\sqrt 3 }}} \right)$$
Answer :   $$\left( {1,\,\frac{1}{{\sqrt 3 }}} \right)$$