Straight Lines MCQ Questions & Answers in Geometry | Maths

Learn Straight Lines MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The coordinates of the four vertices of a quadrilateral are $$\left( { - 2,\,4} \right),\,\left( { - 1,\,2} \right),\,\left( {1,\,2} \right)$$     and $$\left( {2,\,4} \right)$$  taken in order. The equation of the line passing through the vertex $$\left( { - 1,\,2} \right)$$  and dividing the quadrilateral in two equal areas is :

A $$x+1=0$$
B $$x+y=1$$
C $$x-y+3=0$$
D none of these
Answer :   $$x-y+3=0$$

52. Let the perpendiculars from any point on the line $$2x+11y=5$$   upon the lines $$24x+7y=20$$    and $$4x-3y=2$$   have the lengths $$p$$ and $$p'$$ respectively. Then :

A $$2p=p'$$
B $$p=p'$$
C $$p=2p'$$
D none of these
Answer :   $$p=p'$$

53. The combined equation of the lines $${l_1},\,{l_2}$$  is $$2{x^2} + 6xy + {y^2} = 0$$     and that of the lines $${m_1},\,{m_2}$$  is $$4{x^2} + 18xy + {y^2} = 0.$$     If the angle between $${l_1}$$ and $${m_2}$$ be $$\alpha $$ then the angle between $${l_2}$$ and $${m_1}$$ will be :

A $$\frac{\pi }{2} - \alpha $$
B $$2\alpha $$
C $$\frac{\pi }{4} + \alpha $$
D $$\alpha $$
Answer :   $$\alpha $$

54. The area of the triangle formed by two rays whose combined equation is $$y = \left| x \right|$$  and the line $$x + 2y = 2$$   is :

A $$\frac{8}{3}{\text{ uni}}{{\text{t}}^2}$$
B $$\frac{4}{3}{\text{ uni}}{{\text{t}}^2}$$
C $$4{\text{ uni}}{{\text{t}}^2}$$
D $$\frac{{16}}{3}{\text{ uni}}{{\text{t}}^2}$$
Answer :   $$\frac{4}{3}{\text{ uni}}{{\text{t}}^2}$$

55. If the slope of one line is double the slope of another line and the combined equation of the pair of lines is $$\frac{{{x^2}}}{a} + \frac{{2xy}}{h} + \frac{{{y^2}}}{b} = 0$$     then $$ab:{h^2}$$  is equal to :

A 9 : 8
B 3 : 2
C 8 : 3
D none of these
Answer :   9 : 8

56. The intercept cut off by a line from $$y$$-axis twice than that from $$x$$-axis, and the line passes through the point $$\left( {1,\,2} \right).$$  The equation of the line is :

A $$2x + y = 4$$
B $$2x + y + 4 = 0$$
C $$2x - y = 4$$
D $$2x - y + 4 = 0$$
Answer :   $$2x + y = 4$$

57. The distance of the line $$2x-3y=4$$   from the point $$\left( {1,\,1} \right)$$  in the direction of the line $$x+y=1$$   is :

A $$\sqrt 2 $$
B $$5\sqrt 2 $$
C $$\frac{1}{{\sqrt 2 }}$$
D none of these
Answer :   $$\sqrt 2 $$

58. Locus of mid point of the portion between the axes of $$x\,\cos \,\alpha + y\,\sin \,\alpha = p$$     where $$p$$ is constant is :

A $${x^2} + {y^2} = \frac{4}{{{p^2}}}$$
B $${x^2} + {y^2} = 4{p^2}$$
C $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{2}{{{p^2}}}$$
D $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}$$
Answer :   $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} = \frac{4}{{{p^2}}}$$

59. Let $$0 < \alpha < \frac{\pi }{2}$$    be fixed angle. If $$P = \left( {\cos \,\theta ,\,\sin \,\theta } \right)$$    and $$Q = \left( {\cos \left( {\alpha - \theta } \right),\,\sin \left( {\alpha - \theta } \right)} \right),$$       Then $$Q$$ is obtained from $$P$$ by-

A clockwise rotation around origin through an angle $$\alpha $$
B anticlockwise rotation around origin through an angle $$\alpha $$
C reflection in the line through origin with slope $$\tan \,\alpha $$
D reflection in the line through origin with slope $$\tan \left( {\frac{\alpha }{2}} \right)$$
Answer :   reflection in the line through origin with slope $$\tan \left( {\frac{\alpha }{2}} \right)$$

60. Vertices of a variable triangle are $$\left( {3,\,4} \right),\,\left( {5\,\cos \,\theta ,\,5\,\sin \,\theta } \right)$$     and $$\left( {5\,\sin \,\theta ,\, - 5\,\cos \,\theta } \right),$$     where $$\theta \, \in \,R.$$  Locus of it's orthocentre is :

A $${\left( {x + y - 1} \right)^2} + {\left( {x - y - 7} \right)^{^2}} = 100$$
B $${\left( {x + y - 7} \right)^2} + {\left( {x - y - 1} \right)^{^2}} = 100$$
C $${\left( {x + y - 7} \right)^2} + {\left( {x + y - 1} \right)^{^2}} = 100$$
D $${\left( {x + y - 7} \right)^2} + {\left( {x - y + 1} \right)^{^2}} = 100$$
Answer :   $${\left( {x + y - 7} \right)^2} + {\left( {x - y + 1} \right)^{^2}} = 100$$