Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
91.
Let $$A\left( {\overrightarrow a } \right)$$ and $$B\left( {\overrightarrow b } \right)$$ be points on two skew line $$\overrightarrow r = \overrightarrow a + \overrightarrow \lambda $$ and $$\overrightarrow r = \overrightarrow b + u\overrightarrow q $$ and the shortest distance between the skew line is $$1$$, where $$\overrightarrow p $$ and $$\overrightarrow q $$ are unit vectors forming adjacent sides of a parallelogram enclosing an area of $$\frac{1}{2}$$ units. If an angle between $$AB$$ and the line of shortest distance is $${60^ \circ },$$ then $$AB = ?$$
A
$$\frac{1}{2}$$
B
$$2$$
C
$$1$$
D
$$\lambda \, \in \,R - \left\{ 0 \right\}$$
Answer :
$$2$$
$$\eqalign{
& 1 = \left| {\left( {\overrightarrow b - \overrightarrow a } \right).\frac{{\left( {\overrightarrow p \times \overrightarrow q } \right)}}{{\left| {\overrightarrow p \times \overrightarrow q } \right|}}} \right| \cr
& \Rightarrow \left| {\overrightarrow a - \overrightarrow b } \right|\cos \,{60^ \circ } = 1 \cr
& \Rightarrow AB = 2 \cr} $$
92.
What is the locus of a point which is equidistant from the points $$\left( {1,\,2,\,3} \right)$$ and $$\left( {3,\,2,\, - 1} \right)\,?$$
93.
The equation of the plane which passes through the line of intersection of planes $$\overrightarrow r .\overrightarrow {{n_1}} = {q_1},\,\overrightarrow r .\overrightarrow {{n_2}} = {q_2}$$ and is parallel to the line of intersection of planes $$\overrightarrow r .\overrightarrow {{n_3}} = {q_3}$$ and $$\overrightarrow r .\overrightarrow {{n_4}} = {q_4}$$ is :
$$\overrightarrow r .\overrightarrow {{n_1}} + \lambda \overrightarrow r .\overrightarrow {{n_2}} = {q_1} + \lambda {q_2}......\left( {\text{i}} \right)$$
where $$\lambda $$ is a parameter.
So, $$\overrightarrow {{n_1}} + \lambda \overrightarrow {{n_2}} $$ is normal to plane $$\left( {\text{i}} \right).$$ Now, any plane parallel to the line of intersection of the planes $$\overrightarrow r .\overrightarrow {{n_3}} = {q_3}$$ and $$\overrightarrow r .\overrightarrow {{n_4}} = {q_4}$$ is of the form $$\overrightarrow r .\left( {\overrightarrow {{n_3}} \times \overrightarrow {{n_4}} } \right) = d.$$
Hence, we must have
$$\eqalign{
& \left[ {\overrightarrow {{n_1}} + \lambda \overrightarrow {{n_2}} } \right].\left[ {\overrightarrow {{n_3}} \times \overrightarrow {{n_4}} } \right] = 0 \cr
& {\text{or, }}\left[ {\overrightarrow {{n_1}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right] + \lambda \left[ {\overrightarrow {{n_2}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right] = 0 \cr
& {\text{or, }}\lambda = \frac{{ - \left[ {\overrightarrow {{n_1}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]}}{{\left[ {\overrightarrow {{n_2}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]}} \cr} $$
On putting this value in Equation $$\left( {\text{i}} \right),$$ we have the equation of the required plane as
$$\eqalign{
& \overrightarrow r .\overrightarrow {{n_1}} - {q_1} = \frac{{\left[ {\overrightarrow {{n_1}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]}}{{\left[ {\overrightarrow {{n_2}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]}}\left( {\overrightarrow r .\overrightarrow {{n_2}} - {q_2}} \right) \cr
& {\text{or, }}\left[ {\overrightarrow {{n_2}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_1}} - {q_1}} \right) = \left[ {\overrightarrow {{n_1}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_2}} - {q_2}} \right) \cr} $$
94.
Let $$\vec a = \hat i + \hat j + \hat k,\,\vec b = \hat i - \hat j + \hat k$$ and $$\vec c = \hat i - \hat j - \hat k$$ be three vectors. A vector $${\vec v}$$ in the plane of $${\vec a}$$ and $${\vec b},$$ whose projection on $${\vec c}$$ is $$\frac{1}{{\sqrt 3 }},$$ is given by :
A
$$\hat i - 3\hat j + 3\hat k$$
B
$$ - 3\hat i - 3\hat j - \hat k$$
C
$$3\hat i - \hat j + 3\hat k$$
D
$$ \hat i + 3\hat j - 3\hat k$$
Answer :
$$3\hat i - \hat j + 3\hat k$$
As $${\vec v}$$ lies in the plane of $${\vec a}$$ and $${\vec b}$$
$$\eqalign{
& \therefore \vec v = \lambda \vec a + \mu \vec b \cr
& \Rightarrow \vec v = \left( {\lambda + \mu } \right)\hat i + \left( {\lambda - \mu } \right)\hat j + \left( {\lambda + \mu } \right)\hat k \cr} $$
$$\because $$ Projection of $${\vec v}$$ on $${\vec c}$$ is $$\frac{1}{{\sqrt 3 }}$$
$$\eqalign{
& \therefore \,\,\frac{{\vec v.\vec c}}{{\left| {\vec c} \right|}} = \frac{1}{{\sqrt 3 }} \cr
& \Rightarrow \frac{{\left( {\lambda + \mu } \right) - \left( {\lambda - \mu } \right) - \left( {\lambda + \mu } \right)}}{{\sqrt 3 }} = \frac{1}{{\sqrt 3 }} \cr
& \Rightarrow \mu - \lambda = 1{\text{ or }}\mu = \lambda + 1 \cr
& \Rightarrow \vec v = \left( {2\lambda + 1} \right)\hat i - \hat j + \left( {2\lambda + 1} \right)\hat k \cr
& {\text{For }}\lambda = 1,\,\,\,\vec v = 3\hat i - \hat j + 3\hat k \cr} $$
95.
A line makes the same angle $$\alpha $$ with each of the $$x$$ and $$y$$ axes. If the angle $$\theta $$, which it makes with the $$z$$-axis, is such that $${\sin ^2}\theta = 2\,{\sin ^2}\alpha ,$$ then what is the value of $$\alpha \,?$$
96.
The equation of a plane passing through the line of intersection of the planes $$x+2y+3z=2$$ and $$x-y+z=3$$ and at a distance $$\frac{2}{{\sqrt 3 }}$$ from the point $$\left( {3,\,1,\, - 1} \right)$$ is :
97.
The intersection of the spheres $${x^2} + {y^2} + {z^2} + 7x - 2y - z = 13$$ and $${x^2} + {y^2} + {z^2} - 3x + 3y + 4z = 8$$ is the same as the intersection of one of the sphere and the plane :
A
$$2x-y-z=1$$
B
$$x-2y-z=1$$
C
$$x-y-2z=1$$
D
$$x-y-z=1$$
Answer :
$$2x-y-z=1$$
The equations of spheres are $${S_1} : {x^2} + {y^2} + {z^2} + 7x - 2y - z - 13 = 0$$ and $${S_2} : {x^2} + {y^2} + {z^2} - 3x + 3y + 4z - 8 = 0$$
Their plane of intersection is
$$\eqalign{
& {S_1} - {S_2} = 0 \cr
& \Rightarrow 10x - 5y - 5z - 5 = 0 \cr
& \Rightarrow 2x - y - z = 1 \cr} $$
98.
$$ABC$$ is a triangle and $$AD$$ is the median. If the coordinates of $$A$$ are $$\left( {4,\,7,\, - 8} \right)$$ and the coordinates of centroid of the triangle $$ABC$$ are $$\left( {1,\,1,\,1} \right),$$ what are the coordinates of $$D\,?$$
A
$$\left( { - \frac{1}{2},\,2,\,11} \right)$$
B
$$\left( { - \frac{1}{2},\, - 2,\,\frac{{11}}{2}} \right)$$
Let coordinates of $$D$$ be $$\left( {x,\,y,\,z} \right)$$
Co-ordinates of centroid is $$\left( {1,\,1,\,1} \right),$$ and of $$A$$, is $$\left( {4,\,7,\, - 8} \right)$$
Centroid divides median is $$2 : 1$$ ratio
$$\eqalign{
& {\text{So, }}\frac{{AO}}{{OD}} = 2:1 \cr
& {\text{For }}x\,:\,1 = \frac{{2 \times x + 1 \times 4}}{{1 + 2}} \Rightarrow x = - \frac{1}{2} \cr
& {\text{For }}y\,:\,1 = \frac{{2 \times y + 1 \times 7}}{{1 + 2}} \Rightarrow y = - 2 \cr
& {\text{For }}z\,:\,1 = \frac{{2 \times z + 1 \times - 8}}{{1 + 2}} \Rightarrow z = + \frac{{11}}{2} \cr
& \therefore \,{\text{Co - ordinates of }}D{\text{ are}}\left( { - \frac{1}{2},\, - 2,\,\frac{{11}}{2}} \right) \cr} $$
99.
If the centre of the sphere $$a{x^2} + b{y^2} + c{z^2} - 2x + 4y + 2z - 3 = 0$$ is $$\left( {\frac{1}{2},\, - 1,\, - \frac{1}{2}} \right),$$ what is the value of $$b\,?$$
A
$$1$$
B
$$ - 1$$
C
$$2$$
D
$$ - 2$$
Answer :
$$2$$
The given equation of sphere is
$$a{x^2} + b{y^2} + c{z^2} - 2x + 4y + 2z - 3 = 0$$
This equation represents a equation of sphere, if coefficient of $${x^2},{y^2}$$ and $${z^2}$$ is same.
i.e., $$a = b = c$$
$$\therefore $$ Equation of sphere can be re-written as
$$\eqalign{
& b{x^2} + b{y^2} + b{z^2} - 2x + 4y + 2z - 3 = 0 \cr
& \Rightarrow {x^2} + {y^2} + {z^2} - \frac{{2x}}{b} + \frac{{4y}}{b} + \frac{{2z}}{b} - \frac{3}{b} = 0 \cr} $$
The centre of this sphere is $$\left( {\frac{1}{b},\,\frac{{ - 2}}{b},\,\frac{{ - 1}}{b}} \right)$$
Given that the centre of sphere is $$\left( {\frac{1}{2},\, - 1,\, - \frac{1}{2}} \right)$$
$$\frac{1}{b} = \frac{1}{2} \Rightarrow b = 2$$
100.
If $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \lambda \left( {\hat i - \hat j + \hat k} \right)$$ and $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \mu \left( {\hat i + \hat j - \hat k} \right)$$ are two lines, then the equation of acute angle bisector of two lines is :
A
$$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j - \hat k} \right)$$
B
$$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {2\hat i} \right)$$
C
$$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j + \hat k} \right)$$