Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

91. Let $$A\left( {\overrightarrow a } \right)$$  and $$B\left( {\overrightarrow b } \right)$$  be points on two skew line $$\overrightarrow r = \overrightarrow a + \overrightarrow \lambda $$   and $$\overrightarrow r = \overrightarrow b + u\overrightarrow q $$   and the shortest distance between the skew line is $$1$$, where $$\overrightarrow p $$ and $$\overrightarrow q $$ are unit vectors forming adjacent sides of a parallelogram enclosing an area of $$\frac{1}{2}$$ units. If an angle between $$AB$$  and the line of shortest distance is $${60^ \circ },$$  then $$AB = ?$$

A $$\frac{1}{2}$$
B $$2$$
C $$1$$
D $$\lambda \, \in \,R - \left\{ 0 \right\}$$
Answer :   $$2$$

92. What is the locus of a point which is equidistant from the points $$\left( {1,\,2,\,3} \right)$$   and $$\left( {3,\,2,\, - 1} \right)\,?$$

A $$x + z = 0$$
B $$x - 3z = 0$$
C $$x - z = 0$$
D $$x - 2z = 0$$
Answer :   $$x - 2z = 0$$

93. The equation of the plane which passes through the line of intersection of planes $$\overrightarrow r .\overrightarrow {{n_1}} = {q_1},\,\overrightarrow r .\overrightarrow {{n_2}} = {q_2}$$     and is parallel to the line of intersection of planes $$\overrightarrow r .\overrightarrow {{n_3}} = {q_3}$$   and $$\overrightarrow r .\overrightarrow {{n_4}} = {q_4}$$   is :

A $$\left[ {\overrightarrow {{n_2}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_1}} - {q_1}} \right) = \left[ {\overrightarrow {{n_1}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_2}} - {q_2}} \right)$$
B $$\left[ {\overrightarrow {{n_1}} \overrightarrow {{n_2}} \overrightarrow {{n_3}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_4}} {q_4}} \right) = \left[ {\overrightarrow {{n_4}} \overrightarrow {{n_3}} \overrightarrow {{n_1}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_2}} - {q_2}} \right)$$
C $$\left[ {\overrightarrow {{n_4}} \overrightarrow {{n_3}} \overrightarrow {{n_1}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_4}} - {q_4}} \right) = \left[ {\overrightarrow {{n_1}} \overrightarrow {{n_2}} \overrightarrow {{n_3}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_2}} - {q_2}} \right)$$
D None of these
Answer :   $$\left[ {\overrightarrow {{n_2}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_1}} - {q_1}} \right) = \left[ {\overrightarrow {{n_1}} \overrightarrow {{n_3}} \overrightarrow {{n_4}} } \right]\left( {\overrightarrow r .\overrightarrow {{n_2}} - {q_2}} \right)$$

94. Let $$\vec a = \hat i + \hat j + \hat k,\,\vec b = \hat i - \hat j + \hat k$$      and $$\vec c = \hat i - \hat j - \hat k$$   be three vectors. A vector $${\vec v}$$ in the plane of $${\vec a}$$ and $${\vec b},$$ whose projection on $${\vec c}$$ is $$\frac{1}{{\sqrt 3 }},$$  is given by :

A $$\hat i - 3\hat j + 3\hat k$$
B $$ - 3\hat i - 3\hat j - \hat k$$
C $$3\hat i - \hat j + 3\hat k$$
D $$ \hat i + 3\hat j - 3\hat k$$
Answer :   $$3\hat i - \hat j + 3\hat k$$

95. A line makes the same angle $$\alpha $$ with each of the $$x$$ and $$y$$ axes. If the angle $$\theta $$, which it makes with the $$z$$-axis, is such that $${\sin ^2}\theta = 2\,{\sin ^2}\alpha ,$$    then what is the value of $$\alpha \,?$$

A $$\frac{\pi }{4}$$
B $$\frac{\pi }{6}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{4}$$

96. The equation of a plane passing through the line of intersection of the planes $$x+2y+3z=2$$    and $$x-y+z=3$$   and at a distance $$\frac{2}{{\sqrt 3 }}$$ from the point $$\left( {3,\,1,\, - 1} \right)$$   is :

A $$5x-11y+z=17$$
B $$\sqrt 2 x + y = 3\sqrt 2 - 1$$
C $$x + y + z = \sqrt 3 $$
D $$x - \sqrt 2 y = 1 - \sqrt 2 $$
Answer :   $$5x-11y+z=17$$

97. The intersection of the spheres $${x^2} + {y^2} + {z^2} + 7x - 2y - z = 13$$        and $${x^2} + {y^2} + {z^2} - 3x + 3y + 4z = 8$$       is the same as the intersection of one of the sphere and the plane :

A $$2x-y-z=1$$
B $$x-2y-z=1$$
C $$x-y-2z=1$$
D $$x-y-z=1$$
Answer :   $$2x-y-z=1$$

98. $$ABC$$  is a triangle and $$AD$$  is the median. If the coordinates of $$A$$ are $$\left( {4,\,7,\, - 8} \right)$$   and the coordinates of centroid of the triangle $$ABC$$  are $$\left( {1,\,1,\,1} \right),$$   what are the coordinates of $$D\,?$$

A $$\left( { - \frac{1}{2},\,2,\,11} \right)$$
B $$\left( { - \frac{1}{2},\, - 2,\,\frac{{11}}{2}} \right)$$
C $$\left( { - 1,\,2,\,11} \right)$$
D $$\left( { - 5,\, - 11,\,19} \right)$$
Answer :   $$\left( { - \frac{1}{2},\, - 2,\,\frac{{11}}{2}} \right)$$

99. If the centre of the sphere $$a{x^2} + b{y^2} + c{z^2} - 2x + 4y + 2z - 3 = 0$$         is $$\left( {\frac{1}{2},\, - 1,\, - \frac{1}{2}} \right),$$    what is the value of $$b\,?$$

A $$1$$
B $$ - 1$$
C $$2$$
D $$ - 2$$
Answer :   $$2$$

100. If $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \lambda \left( {\hat i - \hat j + \hat k} \right)$$       and $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + \mu \left( {\hat i + \hat j - \hat k} \right)$$       are two lines, then the equation of acute angle bisector of two lines is :

A $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j - \hat k} \right)$$
B $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {2\hat i} \right)$$
C $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j + \hat k} \right)$$
D None of these
Answer :   $$\overrightarrow r = \left( {\hat i + 2\hat j + 3\hat k} \right) + t\left( {\hat j - \hat k} \right)$$