Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
101.
A plane which passes through the point (3, 2, 0) and the line $$\frac{{x - 4}}{1} = \frac{{y - 7}}{5} = \frac{{z - 4}}{4}$$ is :
A
$$x-y+z=1$$
B
$$x+y+z=5$$
C
$$x+2y-z=1$$
D
$$2x-y+z=5$$
Answer :
$$x-y+z=1$$
As the point $$\left( {3,\,2,\,0} \right)$$ lies on the given line $$\frac{{x - 4}}{1} = \frac{{y - 7}}{5} = \frac{{z - 4}}{4}$$
$$\therefore $$ There can be infinite many planes passing through this line. But here out of the four options only first option is satisfied by the coordinates of both the points $$\left( {3,\,2,\,0} \right)$$ and $$\left( {4,\,7,\,4} \right)$$
$$\therefore \,\,x - y + z = 1$$ is the required plane.
102.
Find the equation of set points $$P$$ such that $$P{A^2} + P{B^2} = 2{K^2},$$ where $$A$$ and $$B$$ are the points $$\left( {3,\,4,\,5} \right)$$ and $$\left( { - 1,\,3,\, - 7} \right),$$ respectively :
103.
The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$ lies in the plane $$2x - 4y + z = 7,$$ is :
A
$$7$$
B
$$ - 7$$
C
no real value
D
$$4$$
Answer :
$$7$$
As the line $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$ lies in the plane $$2x-4y+z=7,$$ the point $$\left( {4,\,2,\,k} \right)$$ through which line passes must also lie on the given plane and hence $$2 \times 4 - 4 \times 2 + k = 7\,\,\, \Rightarrow k = 7$$
104.
The distance of the point (1, 0, 2) from the point of intersection of the line $$\frac{{x - 2}}{3} = \frac{{y + 1}}{4} = \frac{{z - 2}}{{12}}$$ and the plane $$x-y+z=16,$$ is :
A
$$3\sqrt {21} $$
B
$$13$$
C
$$2\sqrt {14} $$
D
$$8$$
Answer :
$$13$$
General point on given line $$ \equiv P\left( {3r + 2,\,4r - 1,\,12r + 2} \right)$$
Point $$P$$ must satisfy equation of plane
$$\eqalign{
& \left( {3r + 2} \right) - \left( {4r - 1} \right) + \left( {12r + 2} \right) = 16 \cr
& \Rightarrow 11r + 5 = 16 \cr
& \Rightarrow r = 1 \cr
& P\left( {3 \times 1 + 2,\,4 \times 1 - 1,\,12 \times 1 + 2} \right)\,\,\,\,\, = P\left( {5,\,3,\,14} \right) \cr} $$
distance between $$P$$ and (1, 0, 2)
$$D = \sqrt {{{\left( {5 - 1} \right)}^2} + {3^2} + {{\left( {14 - 2} \right)}^2}} = 13$$
105.
If $$x$$ co-ordinates of a point $$P$$ of line joining the points $$Q\left( {2,\,2,\,1} \right)$$ and $$R\left( {5,\,2,\, - 2} \right)$$ is $$4$$, then the $$z$$-coordinates of $$P$$ is :
A
$$ - 2$$
B
$$ - 1$$
C
$$1$$
D
$$2$$
Answer :
$$ - 1$$
Suppose $$P$$ divides $$QR$$ in ratio $$\lambda :1$$
Then, co-ordinates of $$P$$ are $$\left( {\frac{{5\lambda + 2}}{{\lambda + 1}},\,\frac{{\lambda + 2}}{{\lambda + 1}},\,\frac{{ - 2\lambda + 1}}{{\lambda + 1}}} \right)$$
It is given that the $$x$$-coordinate of $$P$$ is $$4.$$
i.e., $$\frac{{5\lambda + 2}}{{\lambda + 1}} = 4 \Rightarrow \lambda = 2$$
So, $$z$$-coordinate of $$P$$ is $$\frac{{ - 2\lambda + 1}}{{\lambda + 1}} = \frac{{ - 4 + 1}}{{2 + 1}} = - 1$$
106.
The angle between the straight lines $$\overrightarrow r = \left( {2 - 3t} \right)\overrightarrow i + \left( {1 + 2t} \right)\overrightarrow j + \left( {2 + 6t} \right)\overrightarrow k $$ and $$\overrightarrow r = \left( {1 + 4s} \right)\overrightarrow i + \left( {2 - s} \right)\overrightarrow j + \left( {8s - 1} \right)\overrightarrow k $$ is :
A
$${\cos ^{ - 1}}\left( {\frac{{\sqrt {41} }}{{34}}} \right)$$
B
$${\cos ^{ - 1}}\left( {\frac{{21}}{{34}}} \right)$$
C
$${\cos ^{ - 1}}\left( {\frac{{43}}{{63}}} \right)$$
D
$${\cos ^{ - 1}}\left( {\frac{{34}}{{63}}} \right)$$
107.
Let $$L$$ be the line of intersection of the planes $$2x + 3y + z = 1$$ and $$x + 3y + 2z = 2.$$ If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then $$\cos \,\alpha $$ equals :
A
$$1$$
B
$$\frac{1}{{\sqrt 2 }}$$
C
$$\frac{1}{{\sqrt 3 }}$$
D
$$\frac{1}{2}$$
Answer :
$$\frac{1}{{\sqrt 3 }}$$
Let the direction cosines of line $$L$$ be $$l,\,m,\,n,$$ then
$$\eqalign{
& 2l + 3m + n = 0......\left( {\text{i}} \right) \cr
& {\text{and }}l + 3m + 2n = 0......\left( {{\text{ii}}} \right) \cr} $$
on solving equations $$\left( {\text{i}} \right)$$ and $$\left( {\text{ii}} \right),$$ we get
$$\eqalign{
& \frac{l}{{6 - 3}} = \frac{m}{{1 - 4}} = \frac{n}{{6 - 3}} \Rightarrow \frac{l}{3} = \frac{m}{{ - 3}} = \frac{n}{3} \cr
& {\text{Now, }}\frac{l}{3} = \frac{m}{{ - 3}} = \frac{n}{3} = \frac{{\sqrt {{l^2} + {m^2} + {n^2}} }}{{\sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {3^2}} }} \cr
& \because \,{l^2} + {m^2} + {n^2} = 1 \cr
& \therefore \,\frac{l}{3} = \frac{m}{{ - 3}} = \frac{n}{3} = \frac{1}{{\sqrt {27} }} \cr
& \Rightarrow l = \frac{3}{{\sqrt {27} }} = \frac{1}{{\sqrt 3 }},\,m = - \frac{1}{{\sqrt 3 }},\,n = \frac{1}{{\sqrt 3 }} \cr} $$
Line $$L$$, makes an angle $$\alpha $$ with +ve $$x$$-axis
$$\therefore \,l = \cos \,\alpha \Rightarrow \cos \,\alpha = \frac{1}{{\sqrt 3 }}$$
108.
If the straight lines $$\frac{{x - 1}}{k} = \frac{{y - 2}}{2} = \frac{{z - 3}}{3}$$ and $$\frac{{x - 2}}{3} = \frac{{y - 3}}{k} = \frac{{z - 1}}{2}$$ intersect at a point, then the integer $$k$$ is equal to :
A
$$-5$$
B
5
C
2
D
$$-2$$
Answer :
$$-5$$
The two lines intersect if shortest distance between them is zero i.e. $$\frac{{\left( {{{\vec a}_2} - {{\vec a}_1}} \right).{{\vec b}_1} \times {{\vec b}_2}}}{{\left| {{{\vec b}_1} \times {{\vec b}_2}} \right|}} = 0\,\,\,\,\,\, \Rightarrow \left( {{{\vec a}_2} - {{\vec a}_1}} \right).{{\vec b}_1} \times {{\vec b}_2} = 0$$
Where,
$$\eqalign{
& {{\vec a}_1} = \hat i + 2\hat j + 3\hat k,\,\,\,\,{{\vec b}_1} = k\hat i + 2\hat j + 3\hat k \cr
& {{\vec a}_2} = 2\hat i + 3\hat j + \hat k,\,\,\,\,{{\vec b}_2} = 3\hat i + k\hat j + 2\hat k \cr} $$
\[ \Rightarrow \left| \begin{array}{l}
1\,\,\,\,\,1\,\,\,\, - 2\\
k\,\,\,\,\,2\,\,\,\,\,\,\,\,\,3\\
3\,\,\,\,\,k\,\,\,\,\,\,\,\,\,2
\end{array} \right| = 0\]
$$\eqalign{
& \Rightarrow 1\left( {4 - 3k} \right) - 1\left( {2k - 9} \right) - 2\left( {{k^2} - 6} \right) = 0 \cr
& \Rightarrow - 2{k^2} - 5k + 25 = 0 \cr
& \Rightarrow k = - 5{\text{ or }}\frac{5}{2} \cr} $$
$$\because \,\,k$$ is an integer, therefore $$k=-5$$
109.
The shortest distance between the skew lines $${l_1}:\overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow {{b_1}} ,\,{l_2}:\overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow {{b_2}} {\text{ is :}}$$
Let $$PQ$$ be the shortest distance vector between $${l_1}$$ and $${l_2}.$$
Now, $${l_1}$$ passes through $${A_1}\left( {\overrightarrow {{a_1}} } \right)$$ and is parallel to $${\overrightarrow {{b_1}} }$$ and $${l_2}$$ passes
through $${A_2}\left( {\overrightarrow {{a_2}} } \right)$$ and is parallel to $${\overrightarrow {{b_2}} }.$$
Since, $$PQ$$ is perpendicular to both $${l_1}$$ and $${l_2}$$ it is parallel to $$\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} .$$
Let $${\hat n}$$ be the unit vector along $$PQ.$$
Then, $$\hat n = \frac{{\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} }}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
Let $$d$$ be the shortest distance between the given lines $${l_1}$$ and $${l_2}.$$
$$\overrightarrow {\left| {PQ} \right|} = d$$ and $$\overrightarrow {\left| {PQ} \right|} = d\,\hat n$$
Next $$PQ$$ being the line of shortest distance between $${l_1}$$ and $${l_2}$$ is the projection of the line joining the points $${A_1}\left( {\overrightarrow {{a_1}} } \right)$$ and $${A_2}\left( {\overrightarrow {{a_2}} } \right)$$ on $${\hat n}$$ ;
$$\left| {\overrightarrow {PQ} } \right| = \left| {\overrightarrow {{A_1}} \overrightarrow {{A_2}} .\hat n} \right| \Rightarrow d = \frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
110.
What are the direction cosines of a line which is equally inclined to the positive directions of the axes ?
Let $$\ell ,\,m,\,n$$ are the direction cosines of a line that is inclined equally at $$\alpha $$ to the +ve direction of axes.
Now, $$\ell = \cos \,\alpha ,\,m = \cos \,\alpha ,\,n = \cos \,\alpha $$
$$\eqalign{
& {\text{Also, }}{\ell ^2} + {m^2} + {n^2} = 1 \cr
& \Rightarrow 3\,{\cos ^2}\alpha = 1 \cr
& \Rightarrow \cos \,\alpha = \frac{1}{{\sqrt 3 }} \cr} $$
$$\therefore $$ dc’s of the line are : $$\left\langle {\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right\rangle $$