Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

101. A plane which passes through the point (3, 2, 0) and the line $$\frac{{x - 4}}{1} = \frac{{y - 7}}{5} = \frac{{z - 4}}{4}$$     is :

A $$x-y+z=1$$
B $$x+y+z=5$$
C $$x+2y-z=1$$
D $$2x-y+z=5$$
Answer :   $$x-y+z=1$$

102. Find the equation of set points $$P$$ such that $$P{A^2} + P{B^2} = 2{K^2},$$     where $$A$$ and $$B$$ are the points $$\left( {3,\,4,\,5} \right)$$   and $$\left( { - 1,\,3,\, - 7} \right),$$    respectively :

A $${K^2} - 109$$
B $$2{K^2} - 109$$
C $$3{K^2} - 109$$
D $$4{K^2} - 10$$
Answer :   $$2{K^2} - 109$$

103. The value of $$k$$ such that $$\frac{{x - 4}}{1} = \frac{{y - 2}}{1} = \frac{{z - k}}{2}$$     lies in the plane $$2x - 4y + z = 7,$$    is :

A $$7$$
B $$ - 7$$
C no real value
D $$4$$
Answer :   $$7$$

104. The distance of the point (1, 0, 2) from the point of intersection of the line $$\frac{{x - 2}}{3} = \frac{{y + 1}}{4} = \frac{{z - 2}}{{12}}$$     and the plane $$x-y+z=16,$$    is :

A $$3\sqrt {21} $$
B $$13$$
C $$2\sqrt {14} $$
D $$8$$
Answer :   $$13$$

105. If $$x$$ co-ordinates of a point $$P$$ of line joining the points $$Q\left( {2,\,2,\,1} \right)$$   and $$R\left( {5,\,2,\, - 2} \right)$$   is $$4$$, then the $$z$$-coordinates of $$P$$ is :

A $$ - 2$$
B $$ - 1$$
C $$1$$
D $$2$$
Answer :   $$ - 1$$

106. The angle between the straight lines $$\overrightarrow r = \left( {2 - 3t} \right)\overrightarrow i + \left( {1 + 2t} \right)\overrightarrow j + \left( {2 + 6t} \right)\overrightarrow k $$         and $$\overrightarrow r = \left( {1 + 4s} \right)\overrightarrow i + \left( {2 - s} \right)\overrightarrow j + \left( {8s - 1} \right)\overrightarrow k $$         is :

A $${\cos ^{ - 1}}\left( {\frac{{\sqrt {41} }}{{34}}} \right)$$
B $${\cos ^{ - 1}}\left( {\frac{{21}}{{34}}} \right)$$
C $${\cos ^{ - 1}}\left( {\frac{{43}}{{63}}} \right)$$
D $${\cos ^{ - 1}}\left( {\frac{{34}}{{63}}} \right)$$
Answer :   $${\cos ^{ - 1}}\left( {\frac{{34}}{{63}}} \right)$$

107. Let $$L$$ be the line of intersection of the planes $$2x + 3y + z = 1$$    and $$x + 3y + 2z = 2.$$    If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then $$\cos \,\alpha $$   equals :

A $$1$$
B $$\frac{1}{{\sqrt 2 }}$$
C $$\frac{1}{{\sqrt 3 }}$$
D $$\frac{1}{2}$$
Answer :   $$\frac{1}{{\sqrt 3 }}$$

108. If the straight lines $$\frac{{x - 1}}{k} = \frac{{y - 2}}{2} = \frac{{z - 3}}{3}$$     and $$\frac{{x - 2}}{3} = \frac{{y - 3}}{k} = \frac{{z - 1}}{2}$$     intersect at a point, then the integer $$k$$ is equal to :

A $$-5$$
B 5
C 2
D $$-2$$
Answer :   $$-5$$

109. The shortest distance between the skew lines $${l_1}:\overrightarrow r = \overrightarrow {{a_1}} + \lambda \overrightarrow {{b_1}} ,\,{l_2}:\overrightarrow r = \overrightarrow {{a_2}} + \mu \overrightarrow {{b_2}} {\text{ is :}}$$

A $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
B $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{a_2}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
C $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{b_2}} } \right).\overrightarrow {{a_1}} \times \overrightarrow {{b_1}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$
D $$\frac{{\left| {\left( {\overrightarrow {{a_1}} - \overrightarrow {{b_2}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{a_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{a_2}} } \right|}}$$
Answer :   $$\frac{{\left| {\left( {\overrightarrow {{a_2}} - \overrightarrow {{a_1}} } \right).\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}{{\left| {\overrightarrow {{b_1}} \times \overrightarrow {{b_2}} } \right|}}$$

110. What are the direction cosines of a line which is equally inclined to the positive directions of the axes ?

A $$\left\langle {\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right\rangle $$
B $$\left\langle { - \frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right\rangle $$
C $$\left\langle { - \frac{1}{{\sqrt 3 }},\, - \frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right\rangle $$
D $$\left\langle {\frac{1}{3},\,\frac{1}{3},\,\frac{1}{3}} \right\rangle $$
Answer :   $$\left\langle {\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right\rangle $$