Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

111. Two spheres of radii $$3$$ and $$4$$ cut orthogonally. The radius of common circle is :

A $$12$$
B $$\frac{{12}}{5}$$
C $$\frac{{\sqrt {12} }}{5}$$
D $${\sqrt {12} }$$
Answer :   $$\frac{{12}}{5}$$

112. The image of the point $$\left( { - 1,\,3,\,4} \right)$$   in the plane $$x-2y=0$$   is :

A $$\left( { - \frac{{17}}{3},\, - \frac{{19}}{3},\,4} \right)$$
B $$\left( {15,\,11,\,4} \right)$$
C $$\left( { - \frac{{17}}{3},\, - \frac{{19}}{3},\,1} \right)$$
D None of these
Answer :   None of these

113. Which one of the following planes is normal to the plane $$3x + y + z = 5\,?$$

A $$x + 2y + z = 6$$
B $$x - 2y + z = 6$$
C $$x + 2y - z = 6$$
D $$x - 2y - z = 6$$
Answer :   $$x - 2y - z = 6$$

114. A plane passing through the points $$\left( {0,\, - 1,\,0} \right)$$   and $$\left( {0,\,0,\,1} \right)$$   and making an angle $$\frac{\pi }{4}$$ with the plane $$y-z+5=0,$$    also passes through the point :

A $$\left( { - \sqrt 2 ,\,1,\, - 4} \right)$$
B $$\left( { \sqrt 2 ,\, - 1,\,4} \right)$$
C $$\left( { - \sqrt 2 ,\, - 1,\, - 4} \right)$$
D $$\left( {\sqrt 2 ,\,1,\,4} \right)$$
Answer :   $$\left( {\sqrt 2 ,\,1,\,4} \right)$$

115. $$P\left( {a,\,b,\,c} \right);\,Q\left( {a + 2,\,b + 2,\,c - 2} \right)$$       and $$R\left( {a + 6,\,b + 6,\,c - 6} \right)$$     are collinear.
Consider the following statements :
1. $$R$$ divides $$PQ$$  internally in the ratio $$3 : 2$$
2. $$R$$ divides $$PQ$$  externally in the ratio $$3 : 2$$
3. $$Q$$ divides $$PR$$  internally in the ratio $$1 : 2$$
Which of the statements given above is/are correct ?

A 1 only
B 2 only
C 1 and 3
D 2 and 3
Answer :   2 and 3

116. Let $$P\left( {3,\,2,\,6} \right)$$   be a point in space and $$Q$$ be a point on the line $$\vec r = \left( {\hat i - \hat j + 2\hat k} \right) + \mu \left( { - 3\hat i + \hat j + 5\hat k} \right)$$
Then the value of $$\mu $$ for which the vector $$\overrightarrow {PQ} $$  is parallel to the plane $$x-4y+3z=1$$    is :

A $$\frac{1}{4}$$
B $$ - \frac{1}{4}$$
C $$\frac{1}{8}$$
D $$ - \frac{1}{8}$$
Answer :   $$\frac{1}{4}$$

117. If the lines $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 1}}{4}$$      and $$\frac{{x - 3}}{1} = \frac{{y - k}}{2} = \frac{z}{1}$$     intersect, then the value of $$k$$ is :

A $$\frac{3}{2}$$
B $$\frac{9}{2}$$
C $$ - \frac{2}{9}$$
D $$ - \frac{3}{2}$$
Answer :   $$\frac{9}{2}$$

118. Points $$\left( {1,\,1,\,1} \right),\,\left( { - 2,\,4,\,1} \right),\,\left( { - 1,\,5,\,5} \right)$$       and $$\left( {2,\,2,\,5} \right)$$   are the vertices of a :

A Rectangle
B Square
C Parallelogram
D Trapezium
Answer :   Square

119. The direction ratios of the normal to the plane passing through the points $$\left( {1,\, - 2,\,3} \right),\,\left( { - 1,\,2,\, - 1} \right)$$     and parallel to $$\frac{{x - 2}}{2} = \frac{{y + 1}}{3} = \frac{z}{4}$$     is :

A $$\left( {2,\,3,\,4} \right)$$
B $$\left( {14,\,0,\,7} \right)$$
C $$\left( { - 2,\,0,\, - 1} \right)$$
D $$\left( {2,\,0,\, - 1} \right)$$
Answer :   $$\left( {2,\,0,\, - 1} \right)$$

120. Let $$L$$ be the line of intersection of the planes $$2x+3y+z=1$$   and $$x+3y+2z=2.$$    If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then $$\cos \,\alpha $$  equals :

A $$1$$
B $$\frac{1}{{\sqrt 2 }}$$
C $$\frac{1}{{\sqrt 3 }}$$
D $$\frac{1}{2}$$
Answer :   $$\frac{1}{{\sqrt 3 }}$$