Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

121. Under what condition do $$\left\langle {\frac{1}{{\sqrt 2 }},\,\frac{1}{2},\,k} \right\rangle $$   represent direction cosines of a line ?

A $$k = \frac{1}{2}$$
B $$k = - \frac{1}{2}$$
C $$k = \pm \frac{1}{2}$$
D $$k$$ can take any value
Answer :   $$k = \pm \frac{1}{2}$$

122. Let the line $$\frac{{x - 2}}{3} = \frac{{y - 1}}{{ - 5}} = \frac{{z + 2}}{2}$$     lie in the plane $$x + 3y - \alpha z + \beta = 0.$$     Then $$\left( {\alpha ,\,\beta } \right)$$  equals :

A $$\left( { - 6,\,7} \right)$$
B $$\left( {5,\, - 15} \right)$$
C $$\left( { - 5,\,5} \right)$$
D $$\left( {6,\, - 17} \right)$$
Answer :   $$\left( { - 6,\,7} \right)$$

123. If the plane $$2ax-3ay+4az+6=0$$      passes through the midpoint of the line joining the centres of the spheres $${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$       and $${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$       then $$a$$ equals :

A $$-1$$
B $$1$$
C $$-2$$
D $$2$$
Answer :   $$-2$$

124. If the direction cosines of a line are $$\left( {\frac{1}{c},\,\frac{1}{c},\,\frac{1}{c}} \right)$$   then :

A $$0 < c < 1$$
B $$c > 2$$
C $$c > 0$$
D $$c = \pm \sqrt 3 $$
Answer :   $$c = \pm \sqrt 3 $$

125. The equation of the plane which makes with co-ordinate axes, a triangle with its centroid $$\left( {\alpha ,\,\beta ,\,\gamma } \right)$$   is :

A $$\alpha x + \beta y + \gamma z = 3$$
B $$\alpha x + \beta y + \gamma z = 1$$
C $$\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 3$$
D $$\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 1$$
Answer :   $$\frac{x}{\alpha } + \frac{y}{\beta } + \frac{z}{\gamma } = 3$$

126. The plane $$2x - 3y + 6z - 11 = 0$$     makes an angle $${\sin ^{ - 1}}\left( a \right)$$   with the $$x$$-axis. Then the value of $$a$$ is –

A $$\frac{{\sqrt 3 }}{2}$$
B $$\frac{{\sqrt 2 }}{3}$$
C $$\frac{3}{7}$$
D $$\frac{2}{7}$$
Answer :   $$\frac{2}{7}$$

127. What is the angle between two planes $$2x - y + z = 4$$    and $$x + y + 2z = 6\,?$$

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{4}$$
D $$\frac{\pi }{6}$$
Answer :   $$\frac{\pi }{3}$$

128. What are coordinates of the point equidistant from the points $$\left( {a,\,0,\,0} \right),\,\left( {0,\,a,\,0} \right),\,\left( {0,\,0,\,a} \right)$$       and $$\left( {0,\,0,\,0} \right)\,?$$

A $$\left( {\frac{a}{3},\,\frac{a}{3},\,\frac{a}{3}} \right)$$
B $$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$
C $$\left( {a,\,a,\,a} \right)$$
D $$\left( {2a,\,2a,\,2a} \right)$$
Answer :   $$\left( {\frac{a}{2},\,\frac{a}{2},\,\frac{a}{2}} \right)$$

129. The $$xy$$ -plane divides the line joining the points $$\left( { - 1,\,3,\,4} \right)\left( {2,\, - 5,\,6} \right)$$

A internally in the ratio $$2 : 3$$
B externally in the ratio $$2 : 3$$
C internally in the ratio $$3 : 2$$
D externally in the ratio $$3 : 2$$
Answer :   externally in the ratio $$3 : 2$$

130. If the sum of the squares of the distance of the point $$\left( {x,\,y,\,z} \right)$$   from the points $$\left( {a,\,0,\,0} \right)$$   and $$\left( { - a,\,0,\,0} \right)$$   is $$2{c^2},$$  then which one of the following is correct ?

A $${x^2} + {a^2} = 2{c^2} - {y^2} - {z^2}$$
B $${x^2} + {a^2} = {c^2} - {y^2} - {z^2}$$
C $${x^2} - {a^2} = {c^2} - {y^2} - {z^2}$$
D $${x^2} + {a^2} = {c^2} + {y^2} + {z^2}$$
Answer :   $${x^2} + {a^2} = {c^2} - {y^2} - {z^2}$$