Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

131. The lines $$\frac{{x - 2}}{1} = \frac{{y - 3}}{1} = \frac{{z - 4}}{{ - k}}$$     and $$\frac{{x - 1}}{k} = \frac{{y - 4}}{1} = \frac{{z - 5}}{1}$$     are coplanar if :

A $$k=3$$   or $$-2$$
B $$k=0$$   or $$-1$$
C $$k=1$$   or $$-1$$
D $$k=0$$   or $$-3$$
Answer :   $$k=0$$   or $$-3$$

132. If the lines $$\frac{{x - 2}}{1} = \frac{{y - 3}}{1} = \frac{{z - 4}}{{ - k}}$$     and $$\frac{{x - 1}}{k} = \frac{{y - 4}}{2} = \frac{{z - 5}}{1}$$     are coplanar, then $$k$$ can have :

A any value
B exactly one value
C exactly two values
D exactly three values
Answer :   exactly two values

133. Under what condition does the equation $${x^2} + {y^2} + {z^2} + 2ux + 2vy + 2wz = 0$$        represent a real sphere ?

A $${u^2} + {v^2} + {w^2} = {d^2}$$
B $${u^2} + {v^2} + {w^2} > d$$
C $${u^2} + {v^2} + {w^2} < d$$
D $${u^2} + {v^2} + {w^2} < {d^2}$$
Answer :   $${u^2} + {v^2} + {w^2} > d$$

134. If $$O,\,P$$  are the points $$\left( {0,\,0,\,0} \right),\,\left( {2,\,3,\, - 1} \right)$$     respectively, then what is the equation to the plane through $$P$$ at right angles to $$OP\,?$$

A $$2x + 3y + z = 16$$
B $$2x + 3y - z = 14$$
C $$2x + 3y + z = 14$$
D $$2x + 3y - z = 0$$
Answer :   $$2x + 3y - z = 14$$

135. Ratio in which the $$zx$$ -plane divides the join of $$\left( {1,\,2,\,3} \right)$$   and $$\left( {4,\,2,\,1} \right).$$

A $$1 : 1$$  internally
B $$1 : 1$$  externally
C $$2 : 1$$  internally
D $$2 : 1$$  externally
Answer :   $$1 : 1$$  externally

136. A mirror and a source of light are situated at the origin $$O$$ and at a point on $$OX$$  respectively. A ray of light from the source strikes the mirror and is reflected. If the direction ratios of the normal to the plane are $$1,\, – 1,\, 1,$$   then direction cosines of the reflected rays are :

A $$\frac{1}{3},\,\frac{2}{3},\,\frac{2}{3}$$
B $$ - \frac{1}{3},\,\frac{2}{3},\,\frac{2}{3}$$
C $$ - \frac{1}{3},\,\frac{2}{3},\, - \frac{2}{3}$$
D $$ - \frac{1}{3},\, - \frac{2}{3},\,\frac{2}{3}$$
Answer :   $$ - \frac{1}{3},\, - \frac{2}{3},\,\frac{2}{3}$$

137. In $$\Delta ABC$$   the mid-point of the sides $$AB,\,BC$$   and $$CA$$  are respectively $$\left( {l,\,0,\,0} \right),\,\left( {0,\,m,\,0} \right)$$     and $$\left( {0,\,0,\,n} \right).$$
Then, $$\frac{{A{B^2} + B{C^2} + C{A^2}}}{{{l^2} + {m^2} + {n^2}}}$$     is equal to :

A 2
B 4
C 8
D 16
Answer :   8

138. Distance between two parallel planes $$2x+y+2z=8$$    and $$4x+2y+4z+5=0$$     is :

A $$\frac{3}{2}$$
B $$\frac{5}{2}$$
C $$\frac{7}{2}$$
D $$\frac{9}{2}$$
Answer :   $$\frac{7}{2}$$

139. The locus of a point, such that the sum of the squares of its distances from the planes $$x + y + z = 0,\,x - z = 0$$      and $$x - 2y + z = 0$$    is $$9$$, is :

A $${x^2} + {y^2} + {z^2} = 3$$
B $${x^2} + {y^2} + {z^2} = 6$$
C $${x^2} + {y^2} + {z^2} = 9$$
D $${x^2} + {y^2} + {z^2} = 12$$
Answer :   $${x^2} + {y^2} + {z^2} = 9$$

140. The line which passes through the origin and intersect the two lines $$\frac{{x - 1}}{2} = \frac{{y + 3}}{4} = \frac{{z - 5}}{3},\,\frac{{x - 4}}{2} = \frac{{y + 3}}{3} = \frac{{z - 14}}{4},{\text{ is :}}$$

A $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{5}$$
B $$\frac{x}{{ - 1}} = \frac{y}{3} = \frac{z}{5}$$
C $$\frac{x}{1} = \frac{y}{3} = \frac{z}{{ - 5}}$$
D $$\frac{x}{1} = \frac{y}{4} = \frac{z}{{ - 5}}$$
Answer :   $$\frac{x}{1} = \frac{y}{{ - 3}} = \frac{z}{5}$$