Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

141. If $$Q$$ is the image of the point $$P\left( {2,\,3,\,4} \right)$$   under the reflection in the plane $$x - 2y + 5z = 6,$$    then the equation of the line $$PQ$$  is :

A $$\frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{2} = \frac{{z - 4}}{5}$$
B $$\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$
C $$\frac{{x - 2}}{{ - 1}} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$
D $$\frac{{x - 2}}{1} = \frac{{y - 3}}{2} = \frac{{z - 4}}{5}$$
Answer :   $$\frac{{x - 2}}{1} = \frac{{y - 3}}{{ - 2}} = \frac{{z - 4}}{5}$$

142. $$A\left( {3,\,2,\,0} \right),\,B\left( {5,\,3,\,2} \right)$$     and $$C\left( { - 9,\,6,\, - 3} \right)$$   are the vertices of a triangle $$ABC.$$   If the bisector of $$\angle ABC$$   meets $$BC$$  at $$D$$, then coordinates of $$D$$ are :

A $$\left( {\frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
B $$\left( { - \frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
C $$\left( {\frac{{19}}{8},\, - \frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$
D none of these
Answer :   $$\left( {\frac{{19}}{8},\,\frac{{57}}{{16}},\,\frac{{17}}{{16}}} \right)$$

143. The angle between the pair of planes represented by equation $$2{x^2} - 2{y^2} + 4{z^2} + 6xz + 2yz + 3xy = 0{\text{ is :}}$$

A $${\text{co}}{{\text{s}}^{ - 1}}\left( {\frac{1}{3}} \right)$$
B $${\text{co}}{{\text{s}}^{ - 1}}\left( {\frac{4}{{21}}} \right)$$
C $${\text{co}}{{\text{s}}^{ - 1}}\left( {\frac{4}{9}} \right)$$
D $${\text{co}}{{\text{s}}^{ - 1}}\left( {\frac{7}{{\sqrt {84} }}} \right)$$
Answer :   $${\text{co}}{{\text{s}}^{ - 1}}\left( {\frac{4}{9}} \right)$$

144. If $$P\left( {3,\,2,\, - 4} \right),\,Q\left( {5,\,4,\, - 6} \right)$$      and $$R\left( {9,\,8,\, - 10} \right)$$   are collinear, then $$R$$ divides $$PQ$$  in the ratio :

A $$3 : 2$$  internally
B $$3 : 2$$  externally
C $$2 : 1$$  internally
D $$2 : 1$$  externally
Answer :   $$3 : 2$$  externally

145. If the straight line $$\frac{{x - {x_0}}}{\ell } = \frac{{y - {y_0}}}{m} = \frac{{z - {z_0}}}{n}$$      is parallel to the plane $$ax + by + cz + d = 0$$     then which one of the following is correct ?

A $$\ell + m + n = 0$$
B $$a + b + c = 0$$
C $$\frac{a}{\ell } + \frac{b}{m} + \frac{c}{n} = 0$$
D $$a\ell + bm + cn = 0$$
Answer :   $$a\ell + bm + cn = 0$$

146. The coordinates of point in $$xy$$ -plane which is equidistant from three points $$A\left( {2,\,0,\,3} \right),\,B\left( {0,\,3,\,2} \right)$$     and $$C\left( {0,\,0,\,1} \right)$$   are :

A $$\left( {3,\,2,\,0} \right)$$
B $$\left( {3,\,4,\,0} \right)$$
C $$\left( {0,\,0,\,3} \right)$$
D $$\left( {2,\,3,\,0} \right)$$
Answer :   $$\left( {3,\,2,\,0} \right)$$

147. A line with direction cosines proportional to $$2,\,1,\,2$$   meets each of the lines $$x=y+a=z$$    and $$x+a=2y=2z.$$    The co-ordinates of each of the points of intersection are given by :

A $$\left( {2a,\,3a,\,3a} \right),\,\left( {2a,\,a,\,a} \right)$$
B $$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$
C $$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,2a} \right)$$
D $$\left( {3a,\,3a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$
Answer :   $$\left( {3a,\,2a,\,3a} \right),\,\left( {a,\,a,\,a} \right)$$

148. The ratio in which the line joining $$\left( {2,\,4,\,5} \right),\,\left( {3,\,5,\, - 4} \right)$$     is divided by the $$yz$$  plane, is :

A $$2:3$$
B $$3:2$$
C $$ - 2 :3$$
D $$4: - 3$$
Answer :   $$2:3$$

149. The image of the line $$\frac{{x - 1}}{3} = \frac{{y - 3}}{1} = \frac{{z - 4}}{{ - 5}}$$     in the plane $$2x-y+z+3=0$$     is the line :

A $$\frac{{x - 3}}{3} = \frac{{y + 5}}{1} = \frac{{z - 2}}{{ - 5}}$$
B $$\frac{{x - 3}}{{ - 3}} = \frac{{y + 5}}{{ - 1}} = \frac{{z - 2}}{5}$$
C $$\frac{{x + 3}}{3} = \frac{{y - 5}}{1} = \frac{{z - 2}}{{ - 5}}$$
D $$\frac{{x + 3}}{{ - 3}} = \frac{{y - 5}}{{ - 1}} = \frac{{z + 2}}{5}$$
Answer :   $$\frac{{x + 3}}{3} = \frac{{y - 5}}{1} = \frac{{z - 2}}{{ - 5}}$$

150. If $$OABC$$   is a tetrahedron where $$O$$ is the origin and $$A,\,B,\,C$$   are three other vertices with position vectors $$\overrightarrow a ,\,\overrightarrow b $$  and $$\overrightarrow c $$ respectively, then the centre of sphere circumscribing the tetrahedron is given by the position vector :

A $$\frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
B $$\frac{{{b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {a^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
C $$\frac{{{b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {a^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
D $$\frac{{{a^2}\left( {\overrightarrow a \times \overrightarrow b } \right) + {b^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {c^2}\left( {\overrightarrow c \times \overrightarrow a } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$
Answer :   $$\frac{{{a^2}\left( {\overrightarrow b \times \overrightarrow c } \right) + {b^2}\left( {\overrightarrow c \times \overrightarrow a } \right) + {c^2}\left( {\overrightarrow a \times \overrightarrow b } \right)}}{{2\left[ {\overrightarrow a \overrightarrow b \overrightarrow c } \right]}}$$