Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

161. If the angel $$\theta $$ between the line $$\frac{{x + 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{2}$$      and the plane $$2x - y + \sqrt \lambda z + 4 = 0$$     is such that $$\sin \,\theta = \frac{1}{3}$$   then the value of $$\lambda $$ is :

A $$\frac{5}{3}$$
B $$\frac{{ - 3}}{5}$$
C $$\frac{3}{4}$$
D $$\frac{{ - 4}}{3}$$
Answer :   $$\frac{5}{3}$$

162. A variable plane which remains at a constant distance $$3p$$  from the origin cut the coordinate axes at $$A,\,B$$  and $$C$$. The locus of the centroid of triangle $$ABC$$  is :

A $${x^{ - 1}} + {y^{ - 1}} + {z^{ - 1}} = {p^{ - 1}}$$
B $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = {p^{ - 2}}$$
C $$x + y + z = p$$
D $${x^2} + {y^2} + {z^2} = {p^2}$$
Answer :   $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = {p^{ - 2}}$$

163. Two system of rectangular axes have the same origin. If a plane cuts them at distances $$a,\,b,\,c$$  and $$a',\,b',\,c'$$   respectively from the origin, then $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = k\left( {\frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}}} \right),$$         where $$k$$ is equal to :

A $$1$$
B $$2$$
C $$4$$
D None of these
Answer :   $$1$$