Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
161.
If the angel $$\theta $$ between the line $$\frac{{x + 1}}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{2}$$ and the plane $$2x - y + \sqrt \lambda z + 4 = 0$$ is such that $$\sin \,\theta = \frac{1}{3}$$ then the value of $$\lambda $$ is :
A
$$\frac{5}{3}$$
B
$$\frac{{ - 3}}{5}$$
C
$$\frac{3}{4}$$
D
$$\frac{{ - 4}}{3}$$
Answer :
$$\frac{5}{3}$$
If $$\theta $$ is the angle between line and plane then $$\left( {\frac{\pi }{2} - \theta } \right)$$ is the angle between line and normal to plane given by
$$\eqalign{
& \cos \,\left( {\frac{\pi }{2} - \theta } \right) = \frac{{\left( {\hat i + 2\hat j + 2\hat k} \right).\left( {2\hat i - \hat j + \sqrt \lambda \hat k} \right)}}{{3\sqrt {4 + 1 + \lambda } }} \cr
& \cos \left( {\frac{\pi }{2} - \theta } \right) = \frac{{2 - 2 + 2\sqrt \lambda }}{{3 \times \sqrt 5 + \lambda }} \cr
& \Rightarrow \sin \,\theta = \frac{{2\sqrt \lambda }}{{3\sqrt 5 + \lambda }} = \frac{1}{3} \cr
& \Rightarrow 4\lambda = 5 + \lambda \cr
& \Rightarrow \lambda = \frac{5}{3} \cr} $$
162.
A variable plane which remains at a constant distance $$3p$$ from the origin cut the coordinate axes at $$A,\,B$$ and $$C$$. The locus of the centroid of triangle $$ABC$$ is :
Let equation of the variable plane be
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1......\left( 1 \right)$$
This meets the coordinate axes at $$A\left( {a,\,0,\,0} \right),\,B\left( {0,\,b,\,0} \right)$$ and $$C\left( {0,\,0,\,c} \right).$$
Let $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ be the centroid of the $$\Delta ABC.$$ Then
$$\eqalign{
& \alpha = \frac{{a + 0 + 0}}{3},\,\beta = \frac{{0 + b + 0}}{3},\,\gamma = \frac{{0 + 0 + c}}{3} \cr
& \therefore \,a = 3\alpha ,\,b = 3\beta ,\,c = 3\gamma ......\left( 2 \right) \cr} $$
Plane $$\left( 1 \right)$$ is at constant distance $$3p$$ from the origin, so
$$\eqalign{
& 3p = \frac{{\left| {\frac{0}{a} + \frac{0}{b} + \frac{0}{c} - 1} \right|}}{{\sqrt {{{\left( {\frac{1}{a}} \right)}^2} + {{\left( {\frac{1}{b}} \right)}^2} + {{\left( {\frac{1}{c}} \right)}^2}} }} \cr
& \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{9{p^2}}}......\left( 3 \right) \cr} $$
From $$\left( 2 \right)$$ and $$\left( 3 \right),$$ we get
$$\eqalign{
& \frac{1}{{9{\alpha ^2}}} + \frac{1}{{9{\beta ^2}}} + \frac{1}{{9{\gamma ^2}}} = \frac{1}{{9{p^2}}} \cr
& \Rightarrow {\alpha ^{ - 2}} + {\beta ^{ - 2}} + {\gamma ^{ - 2}} = {p^{ - 2}} \cr} $$
Generalizing $$\alpha ,\,\beta ,\,\gamma ,$$ locus of centroid $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ is $${x^{ - 2}} + {y^{ - 2}} + {z^{ - 2}} = {p^{ - 2}}$$
163.
Two system of rectangular axes have the same origin. If a plane cuts them at distances $$a,\,b,\,c$$ and $$a',\,b',\,c'$$ respectively from the origin, then $$\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = k\left( {\frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}}} \right),$$ where $$k$$ is equal to :
A
$$1$$
B
$$2$$
C
$$4$$
D
None of these
Answer :
$$1$$
Let $$a,\,b,\,c$$ be the intercepts when $$Ox,\,Oy,\,Oz$$ are taken as axes, then the equation of the plane is
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1......\left( {\text{i}} \right)$$
Let $$a,\,b,\,c$$ be the intercepts when $$\left( {OX,\,OY,\,OZ} \right)$$ are taken as axes; then in this case equation of the
same plane is
$$\frac{X}{a} + \frac{X}{b} + \frac{X}{c} = 1......\left( {\text{ii}} \right)$$
Now, equations $$\left( {\text{i}} \right)$$ and $$\left( {\text{ii}} \right)$$ are equations of the same plane and in both the cases the origin is same.
Hence, length of the perpendicular drawn from the origin to the plane in both the case must be the same
$$\eqalign{
& \therefore \,\frac{1}{{\sqrt {\frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}}} }} = \frac{1}{{\sqrt {\frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}}} }} \cr
& \Rightarrow \frac{1}{{{a^2}}} + \frac{1}{{{b^2}}} + \frac{1}{{{c^2}}} = \frac{1}{{a{'^2}}} + \frac{1}{{b{'^2}}} + \frac{1}{{c{'^2}}} \cr
& \therefore \,k = 1 \cr} $$