Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

11. The line passing through the points $$\left( {5,\,1,\,a} \right)$$  and $$\left( {3,\,b,\,1} \right)$$  crosses the $$yz$$ -plane at the point $$\left( {0,\,\frac{{17}}{2},\,\frac{{ - 13}}{2}} \right).$$    Then :

A $$a = 2,\,b = 8$$
B $$a = 4,\,b = 6$$
C $$a = 6,\,b = 4$$
D $$a = 8,\,b = 2$$
Answer :   $$a = 6,\,b = 4$$

12. Chord $$AB$$  is a diameter of the sphere $$\left| {\overrightarrow r - 2\overrightarrow i - \overrightarrow j + 6\overrightarrow k } \right| = \sqrt {18} .$$       If the coordinates of $$A$$ are $$\left( {3,\,2,\, - 2} \right),$$   then the coordinates of $$B$$ are :

A $$\left( {1,\,0,\,10} \right)$$
B $$\left( {1,\,0,\, - 10} \right)$$
C $$\left( { - 1,\,0,\,10} \right)$$
D None of these
Answer :   $$\left( {1,\,0,\, - 10} \right)$$

13. A plane passes through a fixed point $$\left( {a,\,b,\,c} \right).$$   The locus of the foot of the perpendicular to it from the origin is the sphere :

A $${x^2} + {y^2} + {z^2} - ax - by - cz = 0$$
B $${x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz = 0$$
C $${x^2} + {y^2} + {z^2} - 4ax - 4by - 4cz = 0$$
D None of these
Answer :   $${x^2} + {y^2} + {z^2} - ax - by - cz = 0$$

14. The equation of the plane through $$\left( {1,\,1,\,1} \right)$$   and passing through the line of intersection of the planes $$x + 2y - z + 1 = 0$$     and $$3x - y - 4z + 3 = 0$$     is :

A $$8x + 5y - 11z + 8 = 0$$
B $$8x + 5y + 11z + 8 = 0$$
C $$8x - 5y - 11z + 8 = 0$$
D None of these
Answer :   $$8x - 5y - 11z + 8 = 0$$

15. The shortest distance from the plane $$12x + 4y + 3z = 327$$     to the sphere $${x^2} + {y^2} + {z^2} + 4x - 2y - 6z = 155{\text{ is :}}$$

A $$39$$
B $$26$$
C $${\text{11}}\frac{4}{{13}}$$
D $$13$$
Answer :   $$13$$

16. A variable plane at a distance of $$1$$ unit from the origin cuts the coordinate axes at $$A,\,B$$  and $$C$$. If the centroid $$D\left( {x,\,y,\,z} \right)$$   of triangle $$ABC$$  satisfies the relation $$\frac{1}{{{x^2}}} + \frac{1}{{{y^2}}} + \frac{1}{{{z^2}}} = k,$$     then the value of $$k$$ is :

A $$3$$
B $$1$$
C $$\frac{1}{3}$$
D $$9$$
Answer :   $$9$$

17. If the line, $$\frac{{x - 1}}{2} = \frac{{y + 1}}{3} = \frac{{z - 2}}{4}$$     meets the plane, $$x+2y+3z=15$$    at a point $$P,$$ then the distance of $$P$$ from the origin is :

A $$\frac{{\sqrt 5 }}{2}$$
B $$2\sqrt 5 $$
C $$\frac{9}{2}$$
D $$\frac{7}{2}$$
Answer :   $$\frac{9}{2}$$

18. $${L_1}$$ and $${L_2}$$ are two lines whose vector equations are
$$\eqalign{ & {L_1}:\overrightarrow r = \lambda \left( {\left( {\cos \,\theta + \sqrt 3 } \right)\hat i + \left( {\sqrt 2 \,\sin \,\theta } \right)\hat j + \left( {\cos \,\theta - \sqrt 3 } \right)\hat k} \right) \cr & {L_2}:\overrightarrow r = \mu \left( {a\hat i + b\hat j + c\hat k} \right), \cr} $$
where $$\lambda $$ and $$\mu $$ are scalars and $$\alpha $$ is the acute angle between $${L_1}$$ and $${L_2}.$$ If the angle $$'\alpha '$$ is independent of $$\theta $$ then the value of $$'\alpha '$$ is :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{6}$$

19. The direction cosines of two lines are related by $$l + m + n = 0$$    and $$a{l^2} + b{m^2} + c{n^2} = 0.$$    The lines are parallel if :

A $$a + b + c = 0$$
B $${a^{ - 1}} + {b^{ - 1}} + {c^{ - 1}} = 0$$
C $$a = b = c$$
D none of these
Answer :   $${a^{ - 1}} + {b^{ - 1}} + {c^{ - 1}} = 0$$

20. Distance of the point $$P\left( {\overrightarrow p } \right)$$  from the line $$\overrightarrow r = \overrightarrow a + \lambda \overrightarrow b $$    is :

A $$\left| {\left( {\overrightarrow a - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow a } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$
B $$\left| {\left( {\overrightarrow b - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow a } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$
C $$\left| {\left( {\overrightarrow a - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow b } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$
D None of these
Answer :   $$\left| {\left( {\overrightarrow a - \overrightarrow p } \right) + \frac{{\left( {\left( {\overrightarrow p - \overrightarrow b } \right).\overrightarrow b } \right)\overrightarrow b }}{{{{\left| {\overrightarrow b } \right|}^2}}}} \right|$$