Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
31.
A variable plane passes through a fixed point $$\left( {1,\,2,\,3} \right).$$ The locus of the foot of the perpendicular from the origin to this plane is given by :
Let $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ be the foot of the perpendicular from the origin $$O\left( {0,\,0,\,0} \right)$$ to the plane So, the plane passes through $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ and is perpendicular to $$OP.$$ Clearly direction ratios of $$OP$$ i.e., normal to the plane are $${\alpha ,\,\beta ,\,\gamma }.$$ Therefore, equation of the plane is
$$\alpha \left( {x - \alpha } \right) + \beta \left( {y - \beta } \right) + \gamma \left( {z - \gamma } \right) = 0$$
This plane passes through the fixed point $$\left( {1,\,2,\,3} \right),$$ so
$$\eqalign{
& \alpha \left( {1 - \alpha } \right) + \beta \left( {2 - \beta } \right) + \gamma \left( {3 - \gamma } \right) = 0 \cr
& {\text{or, }}{\alpha ^2} + {\beta ^2} + {\gamma ^2} - \alpha - 2\beta - 3\gamma = 0 \cr} $$
Generalizing $${\alpha ,\,\beta }$$ and $$\gamma $$, locus of $$P\left( {\alpha ,\,\beta ,\,\gamma } \right)$$ is
$${x^2} + {y^2} + {z^2} - x - 2y - 3z = 0$$
32.
The plane through the intersection of the planes $$x+y+z=1$$ and $$2x+3y-z+4=0$$ and parallel to $$y$$-axis also passes through the point :
A
$$\left( { - 3,\,0,\, - 1} \right)$$
B
$$\left( { - 3,\,1,\,1} \right)$$
C
$$\left( {3,\,3,\, - 1} \right)$$
D
$$\left( {3,\,2,\,1} \right)$$
Answer :
$$\left( {3,\,2,\,1} \right)$$
Since, equation of plane through intersection of planes
$$x+y+z=1$$ and $$2x+3y-z+4=0$$ is
$$\eqalign{
& \left( {2x + 3y - z + 4} \right) + \lambda \left( {x + y + z - 1} \right) = 0 \cr
& \left( {2 + \lambda } \right)x + \left( {3 + \lambda } \right)y + \left( { - 1 + \lambda } \right)z + \left( {4 - \lambda } \right) = 0.....(1) \cr} $$
But, the above plane is parallel to y-axis then
$$\eqalign{
& \left( {2 + \lambda } \right) \times 0 + \left( {3 + \lambda } \right) \times 1 + \left( { - 1 + \lambda } \right) \times 0 = 0 \cr
& \Rightarrow \lambda = - 3 \cr} $$
Hence, the equation of required plane is
$$\eqalign{
& - x - 4z + 7 = 0 \cr
& \Rightarrow x + 4z - 7 = 0 \cr} $$
Therefore, (3, 2, 1) the passes through the point.
33.
Distance between two parallel planes $$2x+y+2z=8$$ and $$4x+2y+4z+5=0$$ is :
A
$$\frac{9}{2}$$
B
$$\frac{5}{2}$$
C
$$\frac{7}{2}$$
D
$$\frac{3}{2}$$
Answer :
$$\frac{7}{2}$$
The planes are $$2x + y + 2z - 8 = 0.....(1)$$
and $$4x + 2y + 4z + 5 = 0$$
or $$2x + y + 2z + \frac{5}{2} = 0.....(2)$$
$$\therefore $$ Distance between (1) and (2)
$$ = \left| {\frac{{\frac{5}{2} + 8}}{{\sqrt {{2^2} + {1^2} + {2^2}} }}} \right| = \left| {\frac{{21}}{{2\sqrt 9 }}} \right| = \frac{7}{2}$$
34.
A parallelepiped is formed by planes drawn through the points $$\left( {2,\,4,\,5} \right)$$ and $$\left( {5,\,9,\,7} \right)$$ parallel to the coordinate planes. The length of the diagonal of the parallelepiped is :
A
$$8{\text{ units}}$$
B
$$4{\text{ units}}$$
C
$$7{\text{ units}}$$
D
$$11{\text{ units}}$$
Answer :
$$7{\text{ units}}$$
$$\eqalign{
& {\text{The length of the edges are given by}} \cr
& a = 5 - 2 = 3, \cr
& b = 9 - 3 = 6, \cr
& c = 7 - 5 = 2 \cr
& {\text{So length of the diagonal is}} \cr
& \sqrt {{a^2} + {b^2} + {c^2}} = \sqrt {9 + 36 + 4} = 7{\text{ units}} \cr} $$
35.
Equation of the plane containing the straight line $$\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$$ and perpendicular to the plane containing the straight lines $$\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$$ and $$\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$$ is :
A
$$x+2y-2z=0$$
B
$$3x+2y-2z=0$$
C
$$x-2y+z=0$$
D
$$5x+2y-4z=0$$
Answer :
$$x-2y+z=0$$
Plane containing two lines $$\frac{x}{3} = \frac{y}{4} = \frac{z}{2}$$ and $$\frac{x}{4} = \frac{y}{2} = \frac{z}{3}$$ is given by
\[\left| \begin{array}{l}
x\,\,\,\,\,y\,\,\,\,\,z\\
3\,\,\,\,\,4\,\,\,\,\,2\\
4\,\,\,\,\,2\,\,\,\,\,3
\end{array} \right| = 0\,\, \Rightarrow 8x - y - 10z = 0\]
Now equation of plane containing the line $$\frac{x}{2} = \frac{y}{3} = \frac{z}{4}$$ and perpendicular to the plane $$8x-y-10z=0$$ is
\[\begin{array}{l}
\left| \begin{array}{l}
x\,\,\,\,\,\,\,\,\,\,\,\,\,y\,\,\,\,\,\,\,\,\,\,\,\,\,z\\
2\,\,\,\,\,\,\,\,\,\,\,\,\,3\,\,\,\,\,\,\,\,\,\,\,\,\,4\\
8\,\,\,\, - 1\,\,\,\, - 10
\end{array} \right| = 0\,\\
\, \Rightarrow - 26x + 52y - 26z = 0\,\,{\rm{ or }}\,\,x - 2y + z = 0
\end{array}\]
36.
The foot of the perpendicular drawn from the origin to a plane is the point $$\left( {1,\, - 3,\,1} \right).$$ What is the intercept cut on the $$x$$-axis by the plane ?
A
$$1$$
B
$$3$$
C
$$\sqrt {11} $$
D
$$11$$
Answer :
$$11$$
Equation of plane passing through $$\left( {1,\, - 3,\,1} \right)$$ and whose normal $$\left( {1,\, - 3,\,1} \right)$$ is
$$\eqalign{
& 1\left( {x - 1} \right) - 3\left( {y + 3} \right) + 1\left( {z - 1} \right) = 0 \cr
& \Rightarrow x - 3y + z - 11 = 0 \cr
& \Rightarrow \frac{x}{{11}} - \frac{y}{{\frac{{11}}{3}}} + \frac{z}{{11}} = 0 \cr} $$
The above plane intercept the $$x$$-axis at $$11.$$
37.
A line with positive direction cosines passes through the point $$P\left( {2,\, - 1,\,2} \right)$$ and makes equal angles with the coordinate axes. The line meets the plane $$2x+y+z=9$$ at point $$Q.$$ The length of the line segment $$PQ$$ equals -
A
$$1$$
B
$$\sqrt 2 $$
C
$$\sqrt 3 $$
D
$$2$$
Answer :
$$\sqrt 3 $$
The line has +ve and equal direction cosines, these are $$\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }},\frac{1}{{\sqrt 3 }}$$ or direction ratios are 1, 1, 1. Also the lines passes through $$P\left( {2,\, - 1,\,2} \right).$$
$$\therefore $$ Equation of line is $$\frac{{x - 2}}{1} = \frac{{y + 1}}{1} = \frac{{z - 2}}{1} = \lambda \,\,\left( {{\text{say}}} \right)$$
Let $$Q\left( {\lambda + 2,\,\lambda - 1,\,\lambda + 2} \right)$$ be a point on this line where it meets the plane $$2x+y+z=9$$
Then $$Q$$ must satisfy the equation of plane
$${\text{i}}{\text{.e}}{\text{.,}}\,\,\,2\left( {\lambda + 2} \right) + \lambda - 1 + \lambda + 2 = 9\,\, \Rightarrow \lambda = 1$$
$$\therefore \,\,Q$$ has coordintes $$\left( {3,\,0,\,3} \right)$$
Hence the length of line segments $$PQ$$
$$ = \sqrt {{{\left( {2 - 3} \right)}^2} + {{\left( { - 1 - 0} \right)}^2} + {{\left( {2 - 3} \right)}^2}} = \sqrt 3 $$
38.
What is the equation of the plane through $$z$$-axis and parallel to the line $$\frac{{x - 1}}{{\cos \,\theta }} = \frac{{y + 2}}{{\sin \,\theta }} = \frac{{z - 3}}{0}\,?$$
A
$$x\,\cot \,\theta + y = 0$$
B
$$x\,\tan \,\theta - y = 0$$
C
$$x + y\,\cot \,\theta = 0$$
D
$$x - y\,\tan \,\theta = 0$$
Answer :
$$x\,\tan \,\theta - y = 0$$
Let equation of plane through $$z$$-axis is $$ax + by = 0$$
It is given that this plane is parallel to the line $$\frac{{x - 1}}{{\cos \,\theta }} = \frac{{y + 2}}{{\sin \,\theta }} = \frac{{z - 3}}{0}$$
Since the plane parallel to the line
$$\eqalign{
& \therefore \,a\,\cos \,\theta + b\,\sin \,\theta = 0 \cr
& \Rightarrow a\,\cos \,\theta = - b\,\sin \,\theta \cr
& \Rightarrow a = - b\,\tan \,\theta \cr
& \therefore \, - b\,\tan \,\theta \,x + by = 0 \cr
& \Rightarrow x\,\tan \,\theta - y = 0\,\,\,\,\,\,\,\left( {\because \,b \ne 0} \right) \cr} $$
which is required equation of plane.
39.
If $$\theta $$ is the acute angle between the diagonals of a cube, then which one of the following is correct ?
A
$$\theta < {30^ \circ }$$
B
$$\theta = {60^ \circ }$$
C
$${30^ \circ } < \theta < {60^ \circ }$$
D
$$\theta > {60^ \circ }$$
Answer :
$$\theta > {60^ \circ }$$
Let there be cube of side $$'a'.$$ Co-ordinates of its vertices $$O,\,A,\,B,\,C,\,D,\,E,\,F$$ have be marked in the figure. Diagonals are $$OE,\,FC,\,GB$$ and $$AD.$$
Direction ratios $$\left( {d{r_3}} \right)$$ of these diagonals are :
$$\eqalign{
& OE\,\left\langle {\left( {a - 0} \right),\,\left( {a - 0} \right),\,\left( {a - 0} \right)} \right\rangle = \left( {a,\,a,\,a} \right)\,; \cr
& FC\,\left\langle {\left( { - a,\,a,\, - a} \right)} \right\rangle \,; \cr
& GB\,\left\langle {\left( { - a,\,a,\,a} \right)} \right\rangle {\text{ and }}AD\,\left\langle {\left( {a,\,a,\, - a} \right)} \right\rangle \cr
& {\text{Their dcs are :}} \cr
& OE,\,\left\langle {\frac{a}{{\sqrt {{a^2} + {a^2} + {a^2}} }},\,\frac{a}{{\sqrt {{a^2} + {a^2} + {a^2}} }},\,\frac{a}{{\sqrt {{a^2} + {a^2} + {a^2}} }}} \right\rangle \cr
& = \left\langle {\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right\rangle \cr
& AD,\,\left\langle {\frac{a}{{\sqrt {\sum {{a^2}} } }},\,\frac{a}{{\sqrt {\sum {{a^2}} } }},\,\frac{{ - a}}{{\sqrt {\sum {{a^2}} } }}} \right\rangle \cr
& = \left\langle {\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }},\,\frac{1}{{\sqrt 3 }}} \right\rangle \cr
& {\text{Angle, }}\theta ,{\text{ between }}AD{\text{ and }}OE{\text{ is given by}} \cr
& {\text{cos}}\,\theta = \pm \frac{{\frac{1}{{\sqrt 3 }} \times \frac{1}{{\sqrt 3 }} + \frac{1}{{\sqrt 3 }} \times \frac{1}{{\sqrt 3 }} - \frac{1}{{\sqrt 3 }} \times \frac{1}{{\sqrt 3 }}}}{{\sqrt {\left\{ {{{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2}} \right\}\left\{ {{{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( {\frac{1}{{\sqrt 3 }}} \right)}^2} + {{\left( { - \frac{1}{{\sqrt 3 }}} \right)}^2}} \right\}} }} \cr
& = \frac{{\frac{1}{3}}}{{1 \times 1}} = \pm \frac{1}{3} \cr
& {\text{Since the cube is in positive octant, we take}}\, + \frac{1}{3} \cr
& {\text{So, }}\cos \,\theta = \frac{1}{3} \Rightarrow \theta = {60^ \circ } \cr} $$
[Since value of $$\cos \,\theta $$ decreases as $$\theta $$ increases in
$$0$$ to $${90^ \circ }.\cos \,\theta = 1$$ when $$\theta = {0^ \circ }$$ and $$\cos \,\theta = 0$$ when $$\theta = {90^ \circ }$$ ]
40.
If the origin is shifted $$\left( {1,\,2,\, - 3} \right)$$ without changing the directions of the axis, then find the new coordinates of the point $$\left( {0,\,4,\,5} \right)$$ with respect to new frame.
A
$$\left( { - 1,\,2,\,8} \right)$$
B
$$\left( {4,\,5,\,1} \right)$$
C
$$\left( {3,\, - 2,\,4} \right)$$
D
$$\left( {6,\,0,\,8} \right)$$
Answer :
$$\left( { - 1,\,2,\,8} \right)$$
In the new frame $$x' = x - {x_1},\,y' = y - {y_1},\,z' = z - {z_1},\,$$
Where $$\left( {{x_1},\,{y_1},\,{z_1}} \right)$$ is shifted origin.
$$ \Rightarrow x' = 0 - 1 = - 1,\,y' = 4 - 2 = 2,\,z' = 5 + 3 = 8$$
Hence, the coordinates of the point with respect to the new coordinates frame are $$\left( { - 1,\,2,\,8} \right).$$