Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

51. Statement -1 : The point $$A\left( {3,\,1,\,6} \right)$$   is the mirror image of the point $$B\left( {1,\,3,\,4} \right)$$   in the plane $$x-y+z=5.$$
Statement -2 : The plane $$x-y+ z=5$$   bisects the line segment joining $$A\left( {3,\,1,\,6} \right)$$   and $$B\left( {1,\,3,\,4} \right).$$

A Statement -1 is true, Statement -2 is true ; Statement -2 is not a correct explanation for Statement -1.
B Statement -1 is true, Statement -2 is false.
C Statement -1 is false, Statement -2 is true.
D Statement - 1 is true, Statement 2 is true ; Statement -2 is a correct explanation for Statement -1.
Answer :   Statement -1 is true, Statement -2 is true ; Statement -2 is not a correct explanation for Statement -1.

52. If the sum of the squares of the distance of the point $$\left( {x,\,y,\,z} \right)$$   from the points $$\left( {a,\,0,\,0} \right)$$   and $$\left( { - a,\,0,\,0} \right)$$   is $$2{c^2},$$  then which one of the following is correct ?

A $${x^2} + {a^2} = 2{c^2} - {y^2} - {z^2}$$
B $${x^2} + {a^2} = {c^2} - {y^2} - {z^2}$$
C $${x^2} - {a^2} = {c^2} - {y^2} - {z^2}$$
D $${x^2} + {a^2} = {c^2} + {y^2} + {z^2}$$
Answer :   $${x^2} + {a^2} = {c^2} - {y^2} - {z^2}$$

53. The angle between the lines whose direction cosines satisfy the equations $$l+m+n=0$$    and $${l^2} = {m^2} + {n^2}$$   is :

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{3}$$

54. Let $$A\left( {4,\,7,\,8} \right),\,B\left( {2,\,3,\,4} \right),\,C\left( {2,\,5,\,7} \right)$$       be the vertices of a triangle $$ABC.$$   The length of internal bisector of $$\angle A$$  is :

A $$\frac{{\sqrt {34} }}{2}$$
B $$\frac{3}{2}\sqrt {34} $$
C $$\frac{2}{3}\sqrt {34} $$
D $$\frac{{\sqrt {34} }}{3}$$
Answer :   $$\frac{2}{3}\sqrt {34} $$

55. The line passing through the points $$\left( {5,\,1,\,a} \right)$$   and $$\left( {3,\,b,\,1} \right)$$   crosses the $$yz$$ -plane at the point $$\left( {0,\,\frac{{17}}{2},\,\frac{{ - 13}}{2}} \right).$$    Then :

A $$a=2\,\,b=8$$
B $$a=4\,\,b=6$$
C $$a=6\,\,b=4$$
D $$a=8\,\,b=2$$
Answer :   $$a=6\,\,b=4$$

56. Let $$P$$ be the image of the point (3, 1, 7) with respect to the plane $$x-y+z=3.$$   Then the equation of the plane passing through $$P$$ and containing the straight line $$\frac{x}{1} = \frac{y}{2} = \frac{z}{1}$$   is :

A $$x+y-3z=0$$
B $$3x+z=0$$
C $$x-4y+7z=0$$
D $$2x-y=0$$
Answer :   $$x-4y+7z=0$$

57. Statement-1: The point $$A\left( {1,\,0,\,7} \right)$$   is the mirror image of the point $$B\left( {1,\,6,\,3} \right)$$   in the line : $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$
Statement-2: The line : $$\frac{x}{1} = \frac{{y - 1}}{2} = \frac{{z - 2}}{3}$$     bisects the line segment joining $$A\left( {1,\,0,\,7} \right)$$   and $$B\left( {1,\,6,\,3} \right).$$

A Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for Statement-1.
B Statement-1 is true, Statement-2 is false.
C Statement-1 is false, Statement-2 is true.
D Statement-1 is true, Statement-2 is true ; Statement-2 is a correct explanation for Statement-1.
Answer :   Statement-1 is true, Statement-2 is true ; Statement-2 is not a correct explanation for Statement-1.

58. If $${L_1}$$ is the line of intersection of the planes $$2x-2y+3z-2=0,\, x-y+z+1=0$$        and $${L_2}$$ is the line of intersection of the planes $$x+2y-z-3=0,\,3x-y+2z-1=0,$$        then the distance of the origin from the plane, containing the lines $${L_1}$$ and $${L_2}$$ is:

A $$\frac{1}{{3\sqrt 2 }}$$
B $$\frac{1}{{2\sqrt 2 }}$$
C $$\frac{1}{\sqrt 2 }$$
D $$\frac{1}{{4\sqrt 2 }}$$
Answer :   $$\frac{1}{{3\sqrt 2 }}$$

59. Two adjacent sides of a parallelogram $$ABCD$$   are given by $$\overrightarrow {AB} = 2\hat i + 10\hat j + 11\hat k$$     and $$\overrightarrow {AD} = \hat i + 2\hat j + 2\hat k.$$    The side $$AD$$  is rotated by an acute angle $$\alpha $$ in the plane of the parallelogram so that $$AD$$  becomes $$AD\,’.$$   If $$AD\,’$$  makes a right angle with the side $$AB,$$  then the cosine of the angle $$\alpha $$ is given by :

A $$\frac{8}{9}$$
B $$\frac{{\sqrt {17} }}{9}$$
C $$\frac{1}{9}$$
D $$\frac{{4\sqrt 5 }}{9}$$
Answer :   $$\frac{{\sqrt {17} }}{9}$$

60. The points $$\left( {5,\,2,\,4} \right),\,\left( {6,\, - 1,\,2} \right)$$     and $$\left( {8,\, - 7,\,k} \right)$$   are collinear if $$k$$ is equal to :

A $$ - 2$$
B $$2$$
C $$3$$
D $$ - 1$$
Answer :   $$ - 2$$