72.
The d.r. of normal to the plane through $$\left( {1,\,0,\,0} \right),\,\left( {0,\,1,\,0} \right)$$ which makes an angle $$\frac{\pi }{4}$$ with plane $$x+y=3$$ are :
A
$$1,\,\sqrt 2 ,\,1$$
B
$$1,\,1,\,\sqrt 2 $$
C
$$1,\,1,\, 2$$
D
$$\sqrt 2 ,\,1,\,1$$
Answer :
$$1,\,1,\,\sqrt 2 $$
Equation of plane through $$\left( {1,\,0,\,0} \right)$$ is
$$a\left( {x - 1} \right) + by + cz = 0.....({\text{i}})$$
(i) passes through $$\left( {0,\,1,\,0} \right)$$
$$\eqalign{
& - a + b = 0\,\,\, \Rightarrow b = a\,; \cr
& {\text{Also, }}\,\cos \,{45^ \circ } = \frac{{a + a}}{{\sqrt {2\left( {2{a^2} + {c^2}} \right)} }} \cr
& \Rightarrow 2a = \sqrt {2{a^2} + {c^2}} \cr
& \Rightarrow 2{a^2} = {c^2} \cr
& \Rightarrow c = \sqrt 2 a \cr} $$
So d.r of normal area, $$a,\,a,\,\sqrt 2 a\,\,{\text{i}}{\text{.e}}{\text{., }}1,\,1,\,\sqrt 2 $$
73.
The line, $$\frac{{x - 2}}{3} = \frac{{y + 1}}{2} = \frac{{z - 1}}{{ - 1}}$$ intersects the curve $$xy = {c^2},\,z = 0$$ if $$c$$ is equal to :
A
$$ \pm 1$$
B
$$ \pm \frac{1}{3}$$
C
$$ \pm \sqrt 5 $$
D
None
Answer :
$$ \pm \sqrt 5 $$
We have, $$z = 0$$ for the point where the line intersects the curve.
Therefore,
$$\eqalign{
& \frac{{x - 2}}{3} = \frac{{y + 1}}{2} = \frac{{0 - 1}}{{ - 1}} \cr
& \Rightarrow \frac{{x - 2}}{3} = 1{\text{ and }}\frac{{y + 1}}{2} = 1 \cr
& \Rightarrow x = 5{\text{ and }}y = 1 \cr} $$
Put these value in $$xy = {c^2},$$ we get,
$$5 = {c^2} \Rightarrow c = \pm 5$$
74.
The distance of the point $$\left( {1,\, - 2,\,3} \right)$$ from the plane $$x - y + z = 5$$ measured parallel to the line $$\frac{x}{2} = \frac{y}{3} = \frac{{z - 1}}{{ - 6}}{\text{ is :}}$$
A
$$1$$
B
$$2$$
C
$$4$$
D
$$2\sqrt 3 $$
Answer :
$$1$$
Equation of the line through $$\left( {1,\, - 2,\,3} \right)$$ parallel to the line $$\frac{x}{2} = \frac{y}{3} = \frac{{z - 1}}{{ - 6}}$$ is
$$\frac{{x - 1}}{2} = \frac{{y + 2}}{3} = \frac{{z - 3}}{{ - 6}} = r\,\,\,\,\left( {{\text{say}}} \right)......\left( 1 \right)$$
Then any point on $$\left( 1 \right)$$ is $$\left( {2r + 1,\,3r - 2,\, - 6r + 3} \right)$$
If this point lies on the plane $$x - y + z = 5$$ then
$$\left( {2r + 1} \right) - \left( {3r - 2} \right) + \left( { - 6r + 3} \right) = 5 \Rightarrow r = \frac{1}{7}$$
Hence the point is $$\left( {\frac{9}{7},\, - \frac{{11}}{7},\,\frac{{15}}{7}} \right)$$
Distance between $$\left( {1,\, - 2,\,3} \right)$$ and $$\left( {\frac{9}{7},\, - \frac{{11}}{7},\,\frac{{15}}{7}} \right)$$
$$\eqalign{
& = \sqrt {\left( {\frac{4}{{49}} + \frac{9}{{49}} + \frac{{36}}{{49}}} \right)} \cr
& = \sqrt {\left( {\frac{{49}}{{49}}} \right)} \cr
& = 1 \cr} $$
75.
The equation of the plane containing the line $$2x-5y+z=3; \,x+y+4z=5,$$ and parallel to the plane, $$x+3y+6z=1,$$ is :
A
$$x+3y+6z=7$$
B
$$2x+6y+12z=-13$$
C
$$2x+6y+12z=13$$
D
$$x+3y+6z=-7$$
Answer :
$$x+3y+6z=7$$
Equation of the plane containing the lines
$$\eqalign{
& 2x - 5y + z = 3{\text{ and }}x + y + 4z = 5{\text{ is}} \cr
& 2x - 5y + z - 3 + \lambda \left( {x + y + 4z - 5} \right){\text{ = 0}} \cr
& \Rightarrow \left( {2 + \lambda } \right)x + \left( { - 5 + \lambda } \right)y + \left( {1 + 4\lambda } \right)z + \left( { - 3 - 5\lambda } \right) = 0.....({\text{i}}) \cr} $$
Since the plane (i) parallel to the given plane $$x+3y+6z=1$$
$$\therefore \frac{{2 + \lambda }}{1} = \frac{{ - 5 + \lambda }}{3} = \frac{{1 + 4\lambda }}{6}\,\,\,\,\, \Rightarrow \lambda = - \frac{{11}}{2}$$
Hence equation of the required plane is
$$\eqalign{
& \left( {2 - \frac{{11}}{2}} \right)x + \left( { - 5 - \frac{{11}}{2}} \right)y + \left( {1 - \frac{{44}}{2}} \right)z + \left( { - 3 + \frac{{55}}{2}} \right) = 0 \cr
& \Rightarrow x + 3y + 6z = 7 \cr} $$
76.
A equation of a plane parallel to the plane $$x-2y+2z-5=0$$ and at a unit distance from the origin is :
A
$$x-2y+2z-3=0$$
B
$$x-2y+2z+1=0$$
C
$$x-2y+2z-1=0$$
D
$$x-2y+2z+5=0$$
Answer :
$$x-2y+2z-3=0$$
Given equation of a plane is $$x-2y+2z-5=0$$
So, Equation of parallel plane is given by $$x-2y+2z+d=0$$
Now, it is given that distance from origin to the parallel plane is 1.
$$\therefore \left| {\frac{d}{{\sqrt {{1^2} + {2^2} + {2^2}} }}} \right| = 1\,\,\,\,\,\, \Rightarrow d = \pm 3$$
So equation of required plane $$x - 2y + 2z \pm 3 = 0$$
77.
Which of the following statement is true ?
A
The point $$A\left( {0,\, - 1} \right),\,B\left( {2,\,1} \right),\,C\left( {0,\,3} \right)$$ and $$D\left( { - 2,\,1} \right)$$ are vertices of a rhombus.
B
The points $$A\left( { - 4,\, - 1} \right),\,B\left( { - 2,\, - 4} \right),\,C\left( {4,\,0} \right)$$ and $$D\left( {2,\,3} \right)$$ are vertices of a square.
C
The points $$A\left( { - 2,\, - 1} \right),\,B\left( {1,\,0} \right),\,C\left( {4,\,3} \right)$$ and $$D\left( {1,\,2} \right)$$ are vertices of a parallelogram.
D
None of these
Answer :
The points $$A\left( { - 2,\, - 1} \right),\,B\left( {1,\,0} \right),\,C\left( {4,\,3} \right)$$ and $$D\left( {1,\,2} \right)$$ are vertices of a parallelogram.
$$\left( {\bf{A}} \right)$$ Here $$A\left( {0,\, - 1} \right),\,B\left( {2,\,1} \right),\,C\left( {0,\,3} \right),\,D\left( { - 2,\,1} \right)$$
For a rhombus all four sides are equal but the diagonal are not equal, we see
$$AC = \sqrt {0 + {4^2}} = 4,\,\,BD = \sqrt {{4^2} - 0} = 4$$
Since diagonals are equals therefore it is a square, not rhombus.
$$\left( {\bf{B}} \right)$$ Here $$AB = \sqrt {{2^2} + {{\left( { - 3} \right)}^2}} = \sqrt {13} ,\,\,BC = \sqrt {{6^2} + {4^2}} = \sqrt {52} $$
Since $$AB \ne BC$$ therefore it is not square.
$$\left( {\bf{C}} \right)$$ In this case mid point of $$AC$$ is $$\left( {\frac{{4 - 2}}{2},\,\frac{{3 - 1}}{2}} \right){\text{ or }}\left( {1,\,1} \right)$$
Also mid-point of diagonal $$BD\left( {\frac{{1 + 1}}{2},\,\frac{{0 + 2}}{2}} \right){\text{ or }}\left( {1,\,1} \right)$$
Hence the points are vertices of a parallelogram.
78.
Value of $$\lambda $$ such that the line $$\frac{{x - 1}}{2} = \frac{{y - 1}}{3} = \frac{{z - 1}}{\lambda }$$ is perpendicular to normal to the plane $$\overrightarrow r .\left( {2\overrightarrow i + 3\overrightarrow j + 4\overrightarrow k } \right) = 0$$ is :
A
$$ - \frac{{13}}{4}$$
B
$$ - \frac{{17}}{4}$$
C
$$4$$
D
None of these
Answer :
$$ - \frac{{13}}{4}$$
Since line is parallel to the plane, vector $$2\overrightarrow i + 3\overrightarrow j + \lambda \overrightarrow k $$ is perpendicular to the normal to
the plane $${2\overrightarrow i + 3\overrightarrow j + 4\overrightarrow k }$$
$$ \Rightarrow 2 \times 2 + 3 \times 3 + 4\lambda = 0\,{\text{or }}\lambda = - \frac{{13}}{4}$$
79.
What is the angle between the planes $$2x - y + z = 6$$ and $$x + y + 2z = 3\,?$$
A
$$\frac{\pi }{2}$$
B
$$\frac{\pi }{3}$$
C
$$\frac{\pi }{4}$$
D
$$\frac{\pi }{6}$$
Answer :
$$\frac{\pi }{3}$$
We know, if $${a_1}x + {b_1}y + {c_1}z = {d_1}$$ and $${a_2}x + {b_2}y + {c_2}z = {d_2}$$
are two planes then angle between them is
$$\cos \,\theta = \frac{{{a_1}{a_2} + {b_1}{b_2} + {c_1}{c_2}}}{{\sqrt {a_1^2 + b_1^2 + c_1^2} \,\sqrt {a_2^2 + b_2^2 + c_2^2} }}$$
Let $$q$$ be the angle between given planes. Here,
$$\eqalign{
& {a_1} = 2,\,{b_1} = - 1,\,{c_1} = 1\,;\,{a_2} = 1,\,{b_2} = 1,\,{c_2} = 2 \cr
& \therefore \,\cos \,q = \frac{{2 \times 1 + 1 \times \left( { - 1} \right) + 1 \times 2}}{{\sqrt {4 + 1 + 1} \,\sqrt {1 + 1 + 4} }} \cr
& \Rightarrow \cos \,q = \frac{3}{6} = \frac{1}{2} \cr
& \Rightarrow \cos \,q = \cos \,\frac{\pi }{3} \cr
& \Rightarrow \theta = \frac{\pi }{3} \cr} $$
80.
What is the acute angle between the planes $$x + y + 2z = 3$$ and $$ - 2x + y - z = 11\,?$$