Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths
Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
81.
If lines $$x = y = z$$ and $$x = \frac{y}{2} = \frac{z}{3}$$ and third line passing through $$\left( {1,\,1,\,1} \right)$$ form a triangle of area $$\sqrt 6 $$ units, then the point of intersection of third line with the second line will be :
A
$$\left( {1,\,2,\,3} \right)$$
B
$$\left( {2,\,4,\,6} \right)$$
C
$$\left( {\frac{4}{3},\,\frac{8}{3},\,\frac{{12}}{3}} \right)$$
D
None of these
Answer :
$$\left( {2,\,4,\,6} \right)$$
$${\text{Let any point on the second line be}}\left( {\lambda ,\,2\lambda ,\,3\lambda } \right)$$
$$\eqalign{
& \cos \,\theta = \frac{6}{{\sqrt {42} }},\,\sin \,\theta = \frac{{\sqrt 6 }}{{\sqrt {42} }} \cr
& {\Delta _{OAB}} = \frac{1}{2}\left( {OA} \right)OB\,\sin \,\theta \cr
& = \frac{1}{2}\sqrt 3 \lambda \sqrt {14} \times \frac{{\sqrt 6 }}{{\sqrt {42} }} \cr
& = \sqrt 6 {\text{ or }}\lambda = 2 \cr
& {\text{So, }}B{\text{ is }}\left( {2,\,4,\,6} \right) \cr} $$
82.
The distance of the point $$\left( {1,\, - 5,\,9} \right)$$ from the plane $$x-y+ z=5$$ measured along the line $$x=y=z$$ is :
83.
A line makes angles $$\theta ,\,\phi $$ and $$\psi $$ with $$x,\,y,\,z$$ axes respectively. Consider the following
$$\eqalign{
& 1.\,{\sin ^2}\theta + {\sin ^2}\phi = {\cos ^2}\psi \cr
& 2.\,{\cos ^2}\theta + {\cos ^2}\phi = {\sin ^2}\psi \cr
& 3.\,{\sin ^2}\theta + {\cos ^2}\phi = {\cos ^2}\psi \cr} $$
Which of the above is/are correct ?
A
1 only
B
2 only
C
3 only
D
2 and 3 both
Answer :
2 only
If a line makes angle $$\theta ,\,\phi $$ and $$\psi $$ with $$x,\, y,\, z$$ axes respectively, then
$$\eqalign{
& {\cos ^2}\theta + {\cos ^2}\phi + {\cos ^2}\psi = 1 \cr
& \Rightarrow {\cos ^2}\theta + {\cos ^2}\phi = 1 - {\cos ^2}\psi \cr
& \Rightarrow {\cos ^2}\theta + {\cos ^2}\phi = {\sin ^2}\psi \cr
& \therefore {\text{ Statement }}\left( 2 \right){\text{ is correct}}{\text{.}} \cr} $$
84.
The equation of the line which passes through the point $$\left( {1,\,1,\,1} \right)$$ and intersect the lines $$\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}$$ and $$\frac{{x + 2}}{1} = \frac{{y - 3}}{2} = \frac{{z + 1}}{4}$$ is :
Any line passing through the point $$\left( {1,\,1,\,1} \right)$$ is
$$\frac{{x - 1}}{a} = \frac{{y - 1}}{b} = \frac{{z - 1}}{c}......\left( {\text{i}} \right)$$
This line intersects the line
$$\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}$$
$${\text{If }}a:b:c \ne 2:3:4$$
\[{\rm{and }}\left| \begin{array}{l}
1 - 1\,\,\,\,\,2 - 1\,\,\,\,\, 3 - 1\\
\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\\
\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,3\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4
\end{array} \right| = 0\]
$$ \Rightarrow a - 2b + c = 0.....\left( {{\text{ii}}} \right)$$
Again, line $$\left( {\text{i}} \right)$$ intersects line
$$\frac{{x - \left( { - 2} \right)}}{1} = \frac{{y - 3}}{2} = \frac{{z - \left( { - 1} \right)}}{4}$$
$${\text{If }}a:b:c \ne 2:3:4$$
\[{\rm{and }}\left| \begin{array}{l}
- 2 - 1\,\,\,\,\,3 - 1\,\,\,\,\, - 1 - 1\\
\,\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,b\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,c\\
\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,2\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4
\end{array} \right| = 0\]
$$ \Rightarrow 6a + 5b - 4c = 0.....\left( {{\text{iii}}} \right)$$
From $$\left( {{\text{ii}}} \right)$$ and $$\left( {{\text{iii}}} \right)$$ by cross multiplication, we have
$$\frac{a}{{8 - 5}} = \frac{b}{{6 + 4}} = \frac{c}{{5 + 12}}{\text{ or }}\frac{a}{3} = \frac{b}{{10}} = \frac{c}{{17}}$$
So, the required line is
$$\frac{{x - 1}}{3} = \frac{{y - 1}}{{10}} = \frac{{z - 1}}{{17}}.$$
85.
Equation of the plane through the mid–point of the line segment joining the points $$P\left( {4,\,5,\, - 10} \right)$$ and $$Q\left( { - 1,\,2,\,1} \right)$$ and perpendicular to $$PQ$$ is :
A
$$\overrightarrow r .\left( {\frac{3}{2}\hat i + \frac{7}{2}\hat j - \frac{9}{2}\hat k} \right) = 45$$
B
$$\overrightarrow r .\left( { - \hat i + 2\hat j - \hat k} \right) = \frac{{135}}{2}$$
C
$$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) + \frac{{135}}{2} = 0$$
D
$$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) = \frac{{135}}{2}$$
Answer :
$$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) = \frac{{135}}{2}$$
86.
The vector equation of the line of intersection of the planes $$\overrightarrow r = \overrightarrow b + {\lambda _1}\left( {\overrightarrow b - \overrightarrow a } \right) + {\mu _1}\left( {\overrightarrow a - \overrightarrow c } \right)$$ and $$\overrightarrow r = \overrightarrow c + {\lambda _2}\left( {\overrightarrow b - \overrightarrow c } \right) + {\mu _2}\left( {\overrightarrow a + \overrightarrow b } \right)\,\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ being non-coplanar vectors, is :
A
$$\overrightarrow r = \overrightarrow b + {\mu _1}\left( {\overrightarrow a + \overrightarrow c } \right)$$
B
$$\overrightarrow r = \overrightarrow b + {\lambda _1}\left( {\overrightarrow a - \overrightarrow c } \right)$$
C
$$\overrightarrow r = 2\overrightarrow b + {\lambda _2}\left( {\overrightarrow a - \overrightarrow c } \right)$$
D
None of these
Answer :
$$\overrightarrow r = \overrightarrow b + {\mu _1}\left( {\overrightarrow a + \overrightarrow c } \right)$$
At the point of intersection of the two given planes, we have
$$\eqalign{
& \overrightarrow b + {\lambda _1}\left( {\overrightarrow b - \overrightarrow a } \right) + {\mu _1}\left( {\overrightarrow a + \overrightarrow c } \right) = \overrightarrow c + {\lambda _2}\left( {\overrightarrow b - \overrightarrow c } \right) + {\mu _2}\left( {\overrightarrow a + \overrightarrow b } \right) \cr
& \Rightarrow \left( { - {\lambda _1} + {\mu _1} - {\mu _2}} \right)\overrightarrow a + \left( {1 + {\lambda _1} - {\lambda _2} - {\mu _2}} \right)\overrightarrow b + \left( {{\mu _1} - 1 + {\lambda _2}} \right)\overrightarrow c = \overrightarrow 0 \cr
& \Rightarrow - {\lambda _1} + {\mu _1} - {\mu _2} = 0,\,1 + {\lambda _1} - {\lambda _2} - {\mu _2} = 0{\text{ and}}\,{\mu _1} - 1 + {\lambda _2} = 0 \cr} $$
[$$\because \,\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are non-coplanar vectors]
From the last two equations, we get
$${\lambda _1} + {\mu _1} - {\mu _2} = 0$$
On solving this equation with $$ - {\lambda _1} + {\mu _1} - {\mu _2} = 0,$$ we get
$$\eqalign{
& {\mu _1} = {\mu _2}{\text{ and }}{\lambda _1} = 0 \cr
& \therefore \,{\lambda _1} = 0,\,{\mu _1} = {\mu _2}{\text{ and }}{\lambda _2} = 1 - {\mu _1} \cr} $$
On substituting these values in either of the given equations, we obtain
$$\overrightarrow r = \overrightarrow b + {\mu _1}\left( {\overrightarrow a + \overrightarrow c } \right)$$
As the required line of intersection of the given planes.
87.
A line $$AB$$ in three-dimensional space makes angles $${45^ \circ }$$ and $${120^ \circ }$$ with the positive $$x$$-axis and the positive $$y$$-axis respectively. If $$AB$$ makes an acute angle $$\theta $$ with the positive $$z$$-axis, then $$\theta $$ equals :
A
$${45^ \circ }$$
B
$${60^ \circ }$$
C
$${75^ \circ }$$
D
$${30^ \circ }$$
Answer :
$${60^ \circ }$$
The angle made by line $$AB$$ with $$x$$-axis is $${45^ \circ }$$
The angle made by line $$AB$$ with $$y$$-axis is $${120^ \circ }$$
Let the angle made by line $$AB$$ with $$z$$-axis is $$\theta $$
We have
$$\eqalign{
& {\cos ^2}\left( {45} \right) + {\cos ^2}\left( {120} \right) + {\cos ^2}\theta = 1 \cr
& \Rightarrow {\cos ^2}\theta = 1 - \frac{1}{2} - \frac{1}{4} = \frac{1}{4} \cr} $$
Given that $$\theta $$ is acute
So we get
$$\eqalign{
& \cos \,\theta = \frac{1}{2} \cr
& \Rightarrow \theta = {60^ \circ } \cr} $$
88.
What are the direction ratios of the line determined by the planes $$x - y + 2z = 1$$ and $$x + y - z = 3\,?$$
A
$$\left( { - 1,\,3,\,2} \right)$$
B
$$\left( { - 1,\, - 3,\,2} \right)$$
C
$$\left( {2,\,1,\,3} \right)$$
D
$$\left( {2,\,3,\,2} \right)$$
Answer :
$$\left( { - 1,\,3,\,2} \right)$$
The intersection of given plane is
$$\eqalign{
& x - y + 2z - 1 + \lambda \left( {x + y - z - 3} \right) = 3 \cr
& \Rightarrow x\left( {1 + \lambda } \right) + y\left( {\lambda - 1} \right) + z\left( {2 - \lambda } \right) - 3\lambda - 1 = 0 \cr} $$
DR’s of normal to the above plane is $$\left( {1 + \lambda ,\,\lambda - 1,\,2 - \lambda } \right)$$
By taking option (A)
$$\eqalign{
& - 1\left( {1 + \lambda } \right) + 3\left( {\lambda - 1} \right) + 2\left( {2 - \lambda } \right) = 0 \cr
& \Rightarrow - 1 - \lambda + 3\lambda - 3 + 4 - 2\lambda = 0 \cr
& \Rightarrow 0 = 0{\text{ which is true}}{\text{.}} \cr} $$
89.
The co-ordinates of the point in which the line joining the points $$\left( {3,\,5,\, - 7} \right)$$ and $$\left( { - 2,\,1,\,8} \right)$$ is intersected by the plane $$yz$$ are given by :
A
$$\left( {0,\,\frac{{13}}{5},\,2} \right)$$
B
$$\left( {0,\, - \frac{{13}}{5},\, - 2} \right)$$
C
$$\left( {0,\, - \frac{{13}}{5},\,\frac{2}{5}} \right)$$
D
$$\left( {0,\,\frac{{13}}{5},\,\frac{2}{5}} \right)$$
90.
If the plane $$2ax - 3ay + 4az + 6 = 0$$ passes through the midpoint of the line joining the centres of the spheres $${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$ and $${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$ then $$a$$ equals :
A
$$ - 1$$
B
$$1$$
C
$$ - 2$$
D
$$2$$
Answer :
$$ - 2$$
Plane $$2ax - 3ay + 4az + 6 = 0$$ passes through the mid point of the centre of spheres $${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$ and $${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$ respectively.
Center of spheres are $$\left( { - 3,\,4,\,1} \right)$$ and $$\left( {5,\, - 2,\,1} \right).$$
Mid point of centres is $$\left( {1,\,1,\,1} \right).$$
Satisfying this in the equation of plane, we get
$$2a - 3a + 4a + 6 = 0 \Rightarrow a = - 2.$$