Three Dimensional Geometry MCQ Questions & Answers in Geometry | Maths

Learn Three Dimensional Geometry MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

81. If lines $$x = y = z$$   and $$x = \frac{y}{2} = \frac{z}{3}$$   and third line passing through $$\left( {1,\,1,\,1} \right)$$   form a triangle of area $$\sqrt 6 $$ units, then the point of intersection of third line with the second line will be :

A $$\left( {1,\,2,\,3} \right)$$
B $$\left( {2,\,4,\,6} \right)$$
C $$\left( {\frac{4}{3},\,\frac{8}{3},\,\frac{{12}}{3}} \right)$$
D None of these
Answer :   $$\left( {2,\,4,\,6} \right)$$

82. The distance of the point $$\left( {1,\, - 5,\,9} \right)$$   from the plane $$x-y+ z=5$$   measured along the line $$x=y=z$$   is :

A $$\frac{{10}}{{\sqrt 3 }}$$
B $$\frac{{20}}{3}$$
C $$3\sqrt {10} $$
D $$10\sqrt {3} $$
Answer :   $$10\sqrt {3} $$

83. A line makes angles $$\theta ,\,\phi $$  and $$\psi $$ with $$x,\,y,\,z$$   axes respectively. Consider the following
$$\eqalign{ & 1.\,{\sin ^2}\theta + {\sin ^2}\phi = {\cos ^2}\psi \cr & 2.\,{\cos ^2}\theta + {\cos ^2}\phi = {\sin ^2}\psi \cr & 3.\,{\sin ^2}\theta + {\cos ^2}\phi = {\cos ^2}\psi \cr} $$
Which of the above is/are correct ?

A 1 only
B 2 only
C 3 only
D 2 and 3 both
Answer :   2 only

84. The equation of the line which passes through the point $$\left( {1,\,1,\,1} \right)$$   and intersect the lines $$\frac{{x - 1}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}$$     and $$\frac{{x + 2}}{1} = \frac{{y - 3}}{2} = \frac{{z + 1}}{4}$$     is :

A $$\frac{{x - 1}}{3} = \frac{{y - 1}}{{10}} = \frac{{z - 1}}{{17}}$$
B $$\frac{{x - 1}}{2} = \frac{{y - 1}}{3} = \frac{{z - 1}}{{ - 5}}$$
C $$\frac{{x - 1}}{{ - 2}} = \frac{{y - 1}}{1} = \frac{{z - 1}}{{ - 4}}$$
D $$\frac{{x - 1}}{8} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{3}$$
Answer :   $$\frac{{x - 1}}{3} = \frac{{y - 1}}{{10}} = \frac{{z - 1}}{{17}}$$

85. Equation of the plane through the mid–point of the line segment joining the points $$P\left( {4,\,5,\, - 10} \right)$$   and $$Q\left( { - 1,\,2,\,1} \right)$$   and perpendicular to $$PQ$$  is :

A $$\overrightarrow r .\left( {\frac{3}{2}\hat i + \frac{7}{2}\hat j - \frac{9}{2}\hat k} \right) = 45$$
B $$\overrightarrow r .\left( { - \hat i + 2\hat j - \hat k} \right) = \frac{{135}}{2}$$
C $$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) + \frac{{135}}{2} = 0$$
D $$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) = \frac{{135}}{2}$$
Answer :   $$\overrightarrow r .\left( {5\hat i + 3\hat j - 11\hat k} \right) = \frac{{135}}{2}$$

86. The vector equation of the line of intersection of the planes $$\overrightarrow r = \overrightarrow b + {\lambda _1}\left( {\overrightarrow b - \overrightarrow a } \right) + {\mu _1}\left( {\overrightarrow a - \overrightarrow c } \right)$$        and $$\overrightarrow r = \overrightarrow c + {\lambda _2}\left( {\overrightarrow b - \overrightarrow c } \right) + {\mu _2}\left( {\overrightarrow a + \overrightarrow b } \right)\,\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$           being non-coplanar vectors, is :

A $$\overrightarrow r = \overrightarrow b + {\mu _1}\left( {\overrightarrow a + \overrightarrow c } \right)$$
B $$\overrightarrow r = \overrightarrow b + {\lambda _1}\left( {\overrightarrow a - \overrightarrow c } \right)$$
C $$\overrightarrow r = 2\overrightarrow b + {\lambda _2}\left( {\overrightarrow a - \overrightarrow c } \right)$$
D None of these
Answer :   $$\overrightarrow r = \overrightarrow b + {\mu _1}\left( {\overrightarrow a + \overrightarrow c } \right)$$

87. A line $$AB$$  in three-dimensional space makes angles $${45^ \circ }$$ and $${120^ \circ }$$ with the positive $$x$$-axis and the positive $$y$$-axis respectively. If $$AB$$  makes an acute angle $$\theta $$ with the positive $$z$$-axis, then $$\theta $$ equals :

A $${45^ \circ }$$
B $${60^ \circ }$$
C $${75^ \circ }$$
D $${30^ \circ }$$
Answer :   $${60^ \circ }$$

88. What are the direction ratios of the line determined by the planes $$x - y + 2z = 1$$    and $$x + y - z = 3\,?$$

A $$\left( { - 1,\,3,\,2} \right)$$
B $$\left( { - 1,\, - 3,\,2} \right)$$
C $$\left( {2,\,1,\,3} \right)$$
D $$\left( {2,\,3,\,2} \right)$$
Answer :   $$\left( { - 1,\,3,\,2} \right)$$

89. The co-ordinates of the point in which the line joining the points $$\left( {3,\,5,\, - 7} \right)$$   and $$\left( { - 2,\,1,\,8} \right)$$   is intersected by the plane $$yz$$  are given by :

A $$\left( {0,\,\frac{{13}}{5},\,2} \right)$$
B $$\left( {0,\, - \frac{{13}}{5},\, - 2} \right)$$
C $$\left( {0,\, - \frac{{13}}{5},\,\frac{2}{5}} \right)$$
D $$\left( {0,\,\frac{{13}}{5},\,\frac{2}{5}} \right)$$
Answer :   $$\left( {0,\,\frac{{13}}{5},\,2} \right)$$

90. If the plane $$2ax - 3ay + 4az + 6 = 0$$      passes through the midpoint of the line joining the centres of the spheres $${x^2} + {y^2} + {z^2} + 6x - 8y - 2z = 13$$       and $${x^2} + {y^2} + {z^2} - 10x + 4y - 2z = 8$$       then $$a$$ equals :

A $$ - 1$$
B $$1$$
C $$ - 2$$
D $$2$$
Answer :   $$ - 2$$