91.
If $${\cos ^{ - 1}}\sqrt p + {\cos ^{ - 1}}\sqrt {1 - p} + {\cos ^{ - 1}}\sqrt {1 - q} = \frac{{3\pi }}{4}\,$$ then the value of $$q$$ is equal to
A
$$1$$
B
$$\frac{1}{{\sqrt 2 }}$$
C
$$\frac{1}{3}$$
D
$$\frac{1}{2}$$
Answer :
$$\frac{1}{2}$$
View Solution
$$\eqalign{
& {\text{Let, }}{\cos ^{ - 1}}\sqrt p + {\cos ^{ - 1}}\sqrt {1 - p} + {\cos ^{ - 1}}\sqrt {1 - q} = \frac{{3\pi }}{4}\,\,.....\left( {\text{i}} \right) \cr
& {\text{Let, }}\,a = {\cos ^{ - 1}}\sqrt p \,b = {\cos ^{ - 1}}\sqrt {1 - p} {\text{ and }}c = {\cos ^{ - 1}}\sqrt {1 - q} \cr
& \Rightarrow \cos a = \sqrt p ,\cos b = \sqrt {1 - p} ,\cos c = \sqrt {1 - q} \cr
& \Rightarrow {\cos ^2}a = p,{\cos ^2}b = 1 - p,{\cos ^2}c = 1 - q \cr
& {\text{Now}},\,\,{\sin ^2}a = 1 - {\cos ^2}a = 1 - p \cr
& \Rightarrow \sin a = \sqrt {1 - p} , \cr
& {\sin ^2}b = 1 - {\cos ^2}b = 1 - 1 + p \cr
& \Rightarrow \sin b = \sqrt p \cr
& {\sin ^2}c = 1 - {\cos ^2}c = 1 - 1 + q = q \cr
& \Rightarrow \sin c = \sqrt q \cr} $$
$$\therefore $$ equation (i) can be written as
$$\eqalign{
& a + b + c = \frac{{3\pi }}{4} \cr
& \Rightarrow a + b = \frac{{3\pi }}{4} - c \cr} $$
Take $$\cos$$ on each side, we get
$$\eqalign{
& \cos \left( {a + b} \right) = \cos \left( {\frac{{3\pi }}{4} - c} \right) \cr
& \Rightarrow \cos a\cos b - \sin a\sin b \cr
& = \cos \left\{ {\pi - \left( {\frac{\pi }{4} + c} \right)} \right\} = - \cos \left( {\frac{\pi }{4} + c} \right) \cr} $$
Put values of $$\cos a, \cos b$$ and $$\sin a, \sin b,$$ we get
$$\eqalign{
& \sqrt p \cdot \sqrt {1 - p} - \sqrt {1 - p} \sqrt p \cr
& = - \left( {\frac{1}{{\sqrt 2 }}\sqrt {1 - q} - \frac{1}{{\sqrt 2 }}\sqrt q } \right) \cr
& \Rightarrow 0 = \sqrt {1 - q} - \sqrt q \cr
& \Rightarrow \sqrt {1 - q} = \sqrt q \cr} $$
Squaring on both side : $$ \Rightarrow 1 - q = q$$
$$\eqalign{
& \Rightarrow 1 = 2q \cr
& \Rightarrow q = \frac{1}{2} \cr} $$
92.
The complete solution set of $${\left[ {{{\cot }^{ - 1}}x} \right]^2} - 6\left[ {{{\cot }^{ - 1}}x} \right] + 9 \leqslant 0,$$ where [.] denotes the greatest integer function, is
A
$$\left( { - \infty ,\cot 3} \right]$$
B
$$\left[ {\cot 3,\cot 2} \right)$$
C
$$\left[ {\cot 3,\infty} \right)$$
D
None of these
Answer :
$$\left( { - \infty ,\cot 3} \right]$$
View Solution
$$\eqalign{
& {\left[ {{{\cot }^{ - 1}}x} \right]^2} - 6\left[ {{{\cot }^{ - 1}}x} \right] + 9 \leqslant 0 \cr
& \Rightarrow {\left( {\left[ {{{\cot }^{ - 1}}x} \right] - 3} \right)^2} \leqslant 0 \cr
& \Rightarrow \left[ {{{\cot }^{ - 1}}x} \right] = 3 \cr
& \Rightarrow 3 \leqslant {\cot ^{ - 1}}x < 4 \cr
& \Rightarrow x \in \left( { - \infty ,\cot 3} \right] \cr} $$
93.
If $${a_1},{a_2},{a_3},.....,{a_n}$$ is an A.P. with common difference $$d;\left( {d > 0} \right)$$ then $$\tan \left[ {{{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_1}{a_2}}}} \right) + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_2}{a_3}}}} \right) + ..... + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_{n - 1}}{a_n}}}} \right)} \right]$$ is equal to
A
$$\frac{{\left( {n - 1} \right)d}}{{{a_1} + {a_n}}}$$
B
$$\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}$$
C
$$\frac{{nd}}{{1 + {a_1}{a_n}}}$$
D
$$\frac{{{a_n} - {a_1}}}{{{a_n} + {a_1}}}$$
Answer :
$$\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}$$
View Solution
We have,
$$\eqalign{
& {\tan ^{ - 1}}\left( {\frac{d}{{1 + {a_1}{a_2}}}} \right) + {\tan ^{ - 1}}\left( {\frac{d}{{1 + {a_2}{a_3}}}} \right) + ..... + {\tan ^{ - 1}}\left( {\frac{d}{{1 + {a_{n - 1}}{a_n}}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\frac{{{a_2} - {a_1}}}{{1 + {a_1}{a_2}}}} \right) + {\tan ^{ - 1}}\left( {\frac{{{a_3} - {a_2}}}{{1 + {a_2}{a_3}}}} \right) + ..... + {\tan ^{ - 1}}\left( {\frac{{{a_n} - {a_{n - 1}}}}{{1 + {a_{n - 1}}{a_n}}}} \right) \cr
& = \left( {{{\tan }^{ - 1}}{a_2} - {{\tan }^{ - 1}}{a_1}} \right) + \left( {{{\tan }^{ - 1}}{a_3} - {{\tan }^{ - 1}}{a_2}} \right) + ..... + \left( {{{\tan }^{ - 1}}{a_n} - {{\tan }^{ - 1}}{a_{n - 1}}} \right) \cr
& = {\tan ^{ - 1}}{a_n} - {\tan ^{ - 1}}{a_1} = {\tan ^{ - 1}}\left( {\frac{{{a_n} - {a_1}}}{{1 + {a_n}{a_1}}}} \right) \cr
& = {\tan ^{ - 1}}\left( {\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}} \right) \cr
& \therefore \tan \left[ {{{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_1}{a_2}}}} \right) + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_2}{a_3}}}} \right) + ..... + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_{n - 1}}{a_n}}}} \right)} \right] = \frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}} \cr} $$
94.
The value of $$\cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} \right)$$ is
A
$$\frac{{23}}{{25}}$$
B
$$\frac{{25}}{{23}}$$
C
$$\frac{{23}}{{24}}$$
D
$$\frac{{24}}{{23}}$$
Answer :
$$\frac{{25}}{{23}}$$
View Solution
$$\eqalign{
& {\cot ^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right) \cr
& = {\cot ^{ - 1}}\left[ {1 + n\left( {n + 1} \right)} \right] \cr
& = {\tan ^{ - 1}}\left[ {\frac{{\left( {n + 1} \right) - n}}{{1 + \left( {n + 1} \right)n}}} \right] \cr
& = {\tan ^{ - 1}}\left( {n + 1} \right) - {\tan ^{ - 1}}n \cr
& \therefore \,\,\sum\limits_{n = 1}^{23} {\left[ {{{\tan }^{ - 1}}\left( {n + 1} \right) - {{\tan }^{ - 1}}n} \right]} \cr
& = {\tan ^{ - 1}}24 - {\tan ^{ - 1}}1 \cr
& = {\tan ^{ - 1}}\frac{{23}}{{25}} \cr
& \therefore \,\,\cot \left[ {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} } \right] \cr
& = \cot \left[ {{{\tan }^{ - 1}}\frac{{23}}{{25}}} \right] \cr
& = \frac{{25}}{{23}} \cr} $$
95.
If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$ is
A
$$\frac{{\sqrt {29} }}{3}$$
B
$$\frac{{29}}{3}$$
C
$$\frac{{\sqrt {3}}}{29}$$
D
$$\frac{{3}}{29}$$
Answer :
$$\frac{{3}}{29}$$
View Solution
$$\eqalign{
& \tan \left[ {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right] \cr
& = \tan \left[ {{{\tan }^{ - 1}}7 - {{\tan }^{ - 1}}4} \right] \cr
& = \tan \left( {{{\tan }^{ - 1}}\left( {\frac{3}{{29}}} \right)} \right) \cr
& = \frac{3}{{29}} \cr} $$
96.
The $$+ ve$$ integral solution of $${\tan ^{ - 1}}x + {\cos ^{ - 1}}\frac{y}{{\sqrt {1 + {y^2}} }} = {\sin ^{ - 1}}\frac{3}{{\sqrt {10} }}{\text{ is}}$$
A
$$x = 1,y = 2;x = 2,y = 7$$
B
$$x = 1,y = 3;x = 2,y = 4$$
C
$$x = 0,y = 0;x = 3,y = 4$$
D
None of these
Answer :
$$x = 1,y = 2;x = 2,y = 7$$
View Solution
$${\tan ^{ - 1}} + {\cos ^{ - 1}}\left( {\frac{y}{{1 + {y^2}}}} \right) = {\sin ^{ - 1}}\left( {\frac{3}{{\sqrt {10} }}} \right)$$
We will convert this equation in $${\tan ^{ - 1}}$$ from
$$\eqalign{
& \Rightarrow {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {\frac{1}{y}} \right) = {\tan ^{ - 1}}3 \cr
& \Rightarrow {\tan ^{ - 1}}\left( {\frac{1}{y}} \right) = {\tan ^{ - 1}}3 - {\tan ^{ - 1}}x \cr
& \Rightarrow {\tan ^{ - 1}}\left( {\frac{1}{y}} \right) = {\tan ^{ - 1}}\left( {\frac{{3 - x}}{{1 + 3x}}} \right) \cr
& \Rightarrow \frac{1}{y} = \frac{{3 - x}}{{1 + 3x}} \cr
& \Rightarrow y = \frac{{1 + 3x}}{{3 - x}} \cr} $$
As, we have to find positive integral values, so $$x$$ can have only two valus 1 and 2.
$$\eqalign{
& {\text{When }}x = 1,\,y = \frac{{1 + 3}}{2} \Rightarrow y = 2 \cr
& {\text{When }}x = 2,\,y = \frac{{1 + 6}}{1} \Rightarrow y = 7 \cr} $$
So, these are two possible solutions for the given equation.
97.
$${\sin ^{ - 1}}\left( {a - \frac{{{a^2}}}{3} + \frac{{{a^3}}}{9} + .....} \right) + {\cos ^{ - 1}}\left( {1 + b + {b^2} + .....} \right) = \frac{\pi }{2}{\text{ when}}$$
A
$$a = - 3\,{\text{and}}\,b = 1$$
B
$$a = 1\,{\text{and}}\,b = - \frac{1}{3}$$
C
$$a = \frac{1}{6}\,{\text{and}}\,b = \frac{1}{2}$$
D
None of these
Answer :
$$a = 1\,{\text{and}}\,b = - \frac{1}{3}$$
View Solution
The given relation is possible when
$$\eqalign{
& a - \frac{{{a^2}}}{3} + \frac{{{a^3}}}{9} + ..... = 1 + b + {b^2} + ..... \cr
& {\text{Also }} - 1 \leqslant a - \frac{{{a^2}}}{3} + \frac{{{a^3}}}{9} + ..... \leqslant 1 \cr
& {\text{and}}\, - 1 \leqslant 1 + b + {b^2} + ..... \leqslant 1 \cr
& \Rightarrow \left| b \right| < 1 \cr
& \Rightarrow \left| {a} \right| < 3 \,{\text{ and }}\,\frac{a}{{1 + \frac{a}{3}}} = \frac{1}{{1 - b}} \cr
& \Rightarrow \frac{{3a}}{{a + 3}} = \frac{1}{{1 - b}} \cr} $$
There are infinitely many solutions. But in the given options, it is satisified only when
$$a = 1\,\,{\text{and }}\,b = - \frac{1}{3}.$$
98.
If $$\sum\limits_{i = 1}^{2n} {{{\sin }^{ - 1}}{x_i} = n\pi } $$ then $$\sum\limits_{i = 1}^{2n} {{x_i}} $$ is equal to
A
$$n$$
B
$$2n$$
C
$$\frac{{n\left( {n + 1} \right)}}{2}$$
D
None of these
Answer :
$$2n$$
View Solution
$$ - \frac{\pi }{2} \leqslant {\sin ^{ - 1}}x \leqslant \frac{\pi }{2}.$$ Hence, from the question, $${\sin^{ - 1}}{x_i} = \frac{\pi }{2}$$ for all $$i.$$
$$\therefore {x_i} = 1$$ for all $$i.$$
99.
What is the value of $$\tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right) - \cot \left( {{{\cot }^{ - 1}}x + {{\cot }^{ - 1}}y + {{\cot }^{ - 1}}z} \right)\,?$$
A
$$0$$
B
$$2\left( {x + y + z} \right)$$
C
$$\frac{{3\pi }}{2}$$
D
$$\frac{{3\pi }}{2} + x + y + z$$
Answer :
$$0$$
View Solution
$$\eqalign{
& \tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right) - \cot \left( {{{\cot }^{ - 1}}x + {{\cot }^{ - 1}}y + {{\cot }^{ - 1}}z} \right) \cr
& = \tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right) - \cot \left( {\frac{\pi }{2} - {{\tan }^{ - 1}}x + \frac{\pi }{2} - {{\tan }^{ - 1}}y + \frac{\pi }{2} - {{\tan }^{ - 1}}z} \right)\,\left( {\because {{\tan }^{ - 1}}x + {{\cot }^{ - 1}}x = \frac{\pi }{2}} \right) \cr
& = \tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right) - \cot \left\{ {\frac{{3\pi }}{2} - \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right)} \right. \cr
& = \tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right) - \tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right) = 0 \cr} $$
100.
If the equation $${\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} = a {\pi^2}$$ has no real root then
A
$$a > 0$$
B
$$a < \frac{1}{{32}}$$
C
$$a < 3$$
D
None of these
Answer :
$$a < \frac{1}{{32}}$$
View Solution
$$\eqalign{
& {\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} = \frac{\pi }{2}\left[ {{{\left( {\frac{\pi }{2}} \right)}^2} - 3\,{{\sin }^{ - 1}}x\,{{\cos }^{ - 1}}x} \right] \cr
& = \frac{{3\pi }}{2}\left[ {{{\left( {{{\sin }^{ - 1}}x - \frac{\pi }{4}} \right)}^2} + \frac{{{\pi ^2}}}{{48}}} \right] \cr} $$