Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

91. If $${\cos ^{ - 1}}\sqrt p + {\cos ^{ - 1}}\sqrt {1 - p} + {\cos ^{ - 1}}\sqrt {1 - q} = \frac{{3\pi }}{4}\,$$         then the value of $$q$$ is equal to

A $$1$$
B $$\frac{1}{{\sqrt 2 }}$$
C $$\frac{1}{3}$$
D $$\frac{1}{2}$$
Answer :   $$\frac{1}{2}$$

92. The complete solution set of $${\left[ {{{\cot }^{ - 1}}x} \right]^2} - 6\left[ {{{\cot }^{ - 1}}x} \right] + 9 \leqslant 0,$$       where [.] denotes the greatest integer function, is

A $$\left( { - \infty ,\cot 3} \right]$$
B $$\left[ {\cot 3,\cot 2} \right)$$
C $$\left[ {\cot 3,\infty} \right)$$
D None of these
Answer :   $$\left( { - \infty ,\cot 3} \right]$$

93. If $${a_1},{a_2},{a_3},.....,{a_n}$$    is an A.P. with common difference $$d;\left( {d > 0} \right)$$   then $$\tan \left[ {{{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_1}{a_2}}}} \right) + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_2}{a_3}}}} \right) + ..... + {{\tan }^{ - 1}}\left( {\frac{d}{{1 + {a_{n - 1}}{a_n}}}} \right)} \right]$$               is equal to

A $$\frac{{\left( {n - 1} \right)d}}{{{a_1} + {a_n}}}$$
B $$\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}$$
C $$\frac{{nd}}{{1 + {a_1}{a_n}}}$$
D $$\frac{{{a_n} - {a_1}}}{{{a_n} + {a_1}}}$$
Answer :   $$\frac{{\left( {n - 1} \right)d}}{{1 + {a_1}{a_n}}}$$

94. The value of $$\cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} \right)$$      is

A $$\frac{{23}}{{25}}$$
B $$\frac{{25}}{{23}}$$
C $$\frac{{23}}{{24}}$$
D $$\frac{{24}}{{23}}$$
Answer :   $$\frac{{25}}{{23}}$$

95. If we consider only the principle values of the inverse trigonometric functions then the value of $$\tan \left( {{{\cos }^{ - 1}}\frac{1}{{5\sqrt 2 }} - {{\sin }^{ - 1}}\frac{4}{{\sqrt {17} }}} \right)$$      is

A $$\frac{{\sqrt {29} }}{3}$$
B $$\frac{{29}}{3}$$
C $$\frac{{\sqrt {3}}}{29}$$
D $$\frac{{3}}{29}$$
Answer :   $$\frac{{3}}{29}$$

96. The $$+ ve$$  integral solution of $${\tan ^{ - 1}}x + {\cos ^{ - 1}}\frac{y}{{\sqrt {1 + {y^2}} }} = {\sin ^{ - 1}}\frac{3}{{\sqrt {10} }}{\text{ is}}$$

A $$x = 1,y = 2;x = 2,y = 7$$
B $$x = 1,y = 3;x = 2,y = 4$$
C $$x = 0,y = 0;x = 3,y = 4$$
D None of these
Answer :   $$x = 1,y = 2;x = 2,y = 7$$

97. $${\sin ^{ - 1}}\left( {a - \frac{{{a^2}}}{3} + \frac{{{a^3}}}{9} + .....} \right) + {\cos ^{ - 1}}\left( {1 + b + {b^2} + .....} \right) = \frac{\pi }{2}{\text{ when}}$$

A $$a = - 3\,{\text{and}}\,b = 1$$
B $$a = 1\,{\text{and}}\,b = - \frac{1}{3}$$
C $$a = \frac{1}{6}\,{\text{and}}\,b = \frac{1}{2}$$
D None of these
Answer :   $$a = 1\,{\text{and}}\,b = - \frac{1}{3}$$

98. If $$\sum\limits_{i = 1}^{2n} {{{\sin }^{ - 1}}{x_i} = n\pi } $$    then $$\sum\limits_{i = 1}^{2n} {{x_i}} $$  is equal to

A $$n$$
B $$2n$$
C $$\frac{{n\left( {n + 1} \right)}}{2}$$
D None of these
Answer :   $$2n$$

99. What is the value of $$\tan \left( {{{\tan }^{ - 1}}x + {{\tan }^{ - 1}}y + {{\tan }^{ - 1}}z} \right) - \cot \left( {{{\cot }^{ - 1}}x + {{\cot }^{ - 1}}y + {{\cot }^{ - 1}}z} \right)\,?$$

A $$0$$
B $$2\left( {x + y + z} \right)$$
C $$\frac{{3\pi }}{2}$$
D $$\frac{{3\pi }}{2} + x + y + z$$
Answer :   $$0$$

100. If the equation $${\left( {{{\sin }^{ - 1}}x} \right)^3} + {\left( {{{\cos }^{ - 1}}x} \right)^3} = a {\pi^2}$$      has no real root then

A $$a > 0$$
B $$a < \frac{1}{{32}}$$
C $$a < 3$$
D None of these
Answer :   $$a < \frac{1}{{32}}$$