Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

101. If $$x \in \left[ {\frac{\pi }{2},\pi} \right]$$   then $${\cot ^{ - 1}}\left( {\frac{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} }}{{\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }}} \right) = $$

A $$\frac{{x - \pi }}{2}$$
B $$\frac{{\pi - x}}{2}$$
C $$\frac{{3\pi - x}}{2}$$
D None of these
Answer :   $$\frac{{\pi - x}}{2}$$

102. If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}\frac{y}{2} = \alpha ,$$     then $$4{x^2} - 4xy\cos \alpha + {y^2}$$     is equal to

A $$2\sin 2\alpha $$
B 4
C $$4{\sin ^2}\alpha $$
D $$ - 4{\sin ^2}\alpha $$
Answer :   $$4{\sin ^2}\alpha $$

103. The range of $$y = \left( {{{\cot }^{ - 1}}x} \right)\left( {{{\cot }^{ - 1}}\left( { - x} \right)} \right){\text{ is}}$$

A $$\left( {0,\frac{{{\pi ^2}}}{4}} \right]$$
B $$\left( {0,\pi } \right)$$
C $$\left( {0, 2\pi } \right]$$
D $$\left( {0,1 } \right]$$
Answer :   $$\left( {0,\frac{{{\pi ^2}}}{4}} \right]$$

104. If $${\cos ^{ - 1}}x > {\sin ^{ - 1}}x$$    then

A $$x < 0$$
B $$ - 1 < x < 0$$
C $$0 \leqslant x < \frac{1}{{\sqrt 2 }}$$
D $$- 1 \leqslant x < \frac{1}{{\sqrt 2 }}$$
Answer :   $$- 1 \leqslant x < \frac{1}{{\sqrt 2 }}$$

105. Let $$ - 1 \leqslant x \leqslant 1.$$   If $$\cos\left( {{{\sin }^{ - 1}}x} \right) = \frac{1}{2},$$    then how many value does $$\tan\left( {{{\cos }^{ - 1}}x} \right)$$   assume ?

A One
B Two
C Four
D Infinite
Answer :   Two

106. The set of values of $$x$$ for which the identity $${\cos ^{ - 1}}x + {\cos ^{ - 1}}\left( {\frac{x}{2} + \frac{1}{2}\sqrt {3 - 3{x^2}} } \right) = \frac{\pi }{3}$$         holds good is

A $$\left[ {0,1} \right]$$
B $$\left[ {0,\frac{1}{2}} \right]$$
C $$\left[ {\frac{1}{2} , 1} \right]$$
D $$\left\{ { - 1,0,1} \right\}$$
Answer :   $$\left[ {\frac{1}{2} , 1} \right]$$

107. If $${\sin ^{ - 1}}x + {\sin ^{ - 1}}y = \frac{\pi }{2},$$     then $$\frac{{1 + {x^4} + {y^4}}}{{{x^2} - {x^2}{y^2} + {y^2}}}\,$$   is equal to

A $$1$$
B $$2$$
C $$\frac{1}{2}$$
D None of these
Answer :   $$2$$

108. $$\sum\limits_{r = 1}^\infty {{{\tan }^{ - 1}}} \left( {\frac{1}{{1 + r + {r^2}}}} \right) = {.....}$$

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{4}$$
C $$\frac{2\pi }{3}$$
D None
Answer :   $$\frac{\pi }{4}$$

109. $${\text{cose}}{{\text{c}}^{ - 1}}\left( {\cos x} \right)$$   is real if

A $$x \in \left[ { - 1,1} \right]$$
B $$x \in R$$
C $$x$$ is an odd multiple of $$\frac{\pi }{2}$$
D $$x$$ is a multiple of $$\pi $$
Answer :   $$x$$ is a multiple of $$\pi $$

110. The value of $${\sin ^{ - 1}}\left\{ {\cot \left( {{{\sin }^{ - 1}}\sqrt {\left( {\frac{{2 - \sqrt 3 }}{4}} \right)} + {{\cos }^{ - 1}}\frac{{\sqrt {12} }}{4} + {{\sec }^{ - 1}}\sqrt 2 } \right)} \right\}$$            is

A $$0$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{6}$$
D $$\frac{\pi }{2}$$
Answer :   $$0$$