Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

111. The value of $${\tan ^{ - 1}}\left( {\frac{1}{2}\left( {\tan 2A} \right) + {{\tan }^{ - 1}}\left( {\cot A} \right) + {{\tan }^{ - 1}}\left( {{{\cot }^3}A} \right)} \right)$$           is

A $$0{\text{ if}}\,\,\frac{\pi }{4} < A < \frac{\pi }{2}$$
B $$\pi {\text{ if}}\,\,0 < A < \frac{\pi }{4}$$
C both $$\left( A \right){\text{ and }}\left( B \right)$$
D None of these
Answer :   both $$\left( A \right){\text{ and }}\left( B \right)$$

112. If $$u = {\cot ^{ - 1}}\sqrt {\tan \alpha } - {\tan ^{ - 1}}\sqrt {\tan \alpha } ,$$       then $$\tan \left( {\frac{\pi }{4} - \frac{u}{2}} \right)$$   is equal to

A $$\sqrt {\tan \alpha } $$
B $$\sqrt {\cot \alpha } $$
C $${\tan \alpha }$$
D $${\cot \alpha }$$
Answer :   $$\sqrt {\tan \alpha } $$

113. If $$\sum\limits_{i = 1}^{10} {{{\cos }^{ - 1}}{x_i} = 0} $$    then $$\sum\limits_{i = 1}^{10} {{x_i}} $$  is

A 0
B 10
C 5
D None of these
Answer :   10

114. If $$\sin \left( {{{\sin }^{ - 1}}\frac{1}{5} + {{\cos }^{ - 1}}x} \right) = 1,$$      then what is $$x$$ equal to ?

A $$0$$
B $$1$$
C $$\frac{4}{5}$$
D $$\frac{1}{5}$$
Answer :   $$\frac{1}{5}$$

115. The range of $$f\left( x \right) = {\sin ^{ - 1}}x + {\tan ^{ - 1}}x + {\sec ^{ - 1}}x$$       is

A $$\left( {\frac{\pi }{4},\frac{{3\pi }}{4}} \right)$$
B $$\left[ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right]$$
C $$\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}$$
D None of these
Answer :   $$\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}$$

116. $${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$       then $$\sin x = $$

A $${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$
B $${\cot ^2}\left( {\frac{\alpha }{2}} \right)$$
C $$\tan \alpha $$
D $${\cot}\left( {\frac{\alpha }{2}} \right)$$
Answer :   $${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$

117. $$\theta = {\tan ^{ - 1}}\left( {2\,{{\tan }^2}\theta } \right) - {\tan ^{ - 1}}\left( {\frac{1}{3}\tan \theta } \right){\text{ then }}\tan \theta = $$

A $$ - 2$$
B $$ - 1$$
C $$\frac{2}{3}$$
D $$2$$
Answer :   $$ - 2$$