111.
The value of $${\tan ^{ - 1}}\left( {\frac{1}{2}\left( {\tan 2A} \right) + {{\tan }^{ - 1}}\left( {\cot A} \right) + {{\tan }^{ - 1}}\left( {{{\cot }^3}A} \right)} \right)$$ is
A
$$0{\text{ if}}\,\,\frac{\pi }{4} < A < \frac{\pi }{2}$$
B
$$\pi {\text{ if}}\,\,0 < A < \frac{\pi }{4}$$
C
both $$\left( A \right){\text{ and }}\left( B \right)$$
D
None of these
Answer :
both $$\left( A \right){\text{ and }}\left( B \right)$$
View Solution
We know that $$\cot A > 1{\text{ if }}0 < A < \frac{\pi }{4}$$
$$\eqalign{
& {\text{and }}\cot A < 1{\text{ if }}\frac{\pi }{4} < A < \frac{\pi }{2} \cr
& {\tan ^{ - 1}}\left( {\cot A} \right) + {\tan ^{ - 1}}\left( {{{\cot }^3}A} \right) = \pi + {\tan ^{ - 1}}\frac{{\cot A + {{\cot }^3}A}}{{1 - {{\cot }^4}A}} \cr
& {\text{If }}0 < A < \frac{\pi }{4}{\text{ and }} = {\tan ^{ - 1}}\frac{{\cot A + {{\cot }^3}A}}{{1 - {{\cot }^4}A}}{\text{ if }}\frac{\pi }{4} < A < \frac{\pi }{2} \cr
& {\text{Also}},{\text{ }}\frac{{\cot A + {{\cot }^3}A}}{{1 - {{\cot }^4}A}} = \frac{{\cot A\,{\text{cose}}{{\text{c}}^2}A \cdot {{\sin }^4}A}}{{{{\sin }^4}A - {{\cot }^4}A}} \cr
& = \frac{{\sin A\cos A}}{{\left( {{{\sin }^2}A + {{\cos }^2}A} \right)\left( {{{\sin }^2}A - {{\cos }^2}A} \right)}} = - \frac{{\sin 2A}}{{2\cos 2A}} = - \frac{1}{2}\tan 2A \cr} $$
Hence, $${\tan ^{ - 1}}\left( {\frac{1}{2}\tan 2A} \right) + {\tan ^{ - 1}}\left( {\cot A} \right) + {\tan ^{ - 1}}\left( {{{\cot }^3}A} \right) = \pi ,$$
\[ = \left\{ {\begin{array}{*{20}{c}}
{\pi \,\,\,\,\,\,\,{\rm{ if }}\, 0 < A < \frac{\pi }{4}}\\
{0\,\,\,\,\,\,\,{\rm{ if }}\,\frac{\pi }{4} < A < \frac{\pi }{2}}
\end{array}\,\,\,\,\,\left[ {{\rm{Since,}}\,{{\tan }^{ - 1}}\left( { - x} \right) = - {{\tan }^{ - 1}}x} \right]} \right.\]
112.
If $$u = {\cot ^{ - 1}}\sqrt {\tan \alpha } - {\tan ^{ - 1}}\sqrt {\tan \alpha } ,$$ then $$\tan \left( {\frac{\pi }{4} - \frac{u}{2}} \right)$$ is equal to
A
$$\sqrt {\tan \alpha } $$
B
$$\sqrt {\cot \alpha } $$
C
$${\tan \alpha }$$
D
$${\cot \alpha }$$
Answer :
$$\sqrt {\tan \alpha } $$
View Solution
$$\eqalign{
& {\text{Let, }}\sqrt {\tan \alpha } = \tan x, \cr
& {\text{then }}u = {\cot ^{ - 1}}\left( {\tan x} \right) - {\tan ^{ - 1}}\left( {\tan x} \right) = \frac{\pi }{2} - x - x = \frac{\pi }{2} - 2x \cr
& \Rightarrow 2x = \frac{\pi }{2} - u \cr
& \Rightarrow x = \frac{\pi }{4} - \frac{u}{2} \cr
& \Rightarrow \tan x = \tan \left( {\frac{\pi }{4} - \frac{u}{2}} \right) \cr
& \Rightarrow \sqrt {\tan \alpha } = \tan \left( {\frac{\pi }{4} - \frac{u}{2}} \right) \cr} $$
113.
If $$\sum\limits_{i = 1}^{10} {{{\cos }^{ - 1}}{x_i} = 0} $$ then $$\sum\limits_{i = 1}^{10} {{x_i}} $$ is
A
0
B
10
C
5
D
None of these
Answer :
10
View Solution
$$0 \leqslant {\cos ^{ - 1}}x \leqslant \pi .$$ Hence, from the question, $${\cos^{ - 1}}{x_i} = 0$$ for all $$i.$$
$$\therefore {x_i} = 1$$ for all $$i.$$
114.
If $$\sin \left( {{{\sin }^{ - 1}}\frac{1}{5} + {{\cos }^{ - 1}}x} \right) = 1,$$ then what is $$x$$ equal to ?
A
$$0$$
B
$$1$$
C
$$\frac{4}{5}$$
D
$$\frac{1}{5}$$
Answer :
$$\frac{1}{5}$$
View Solution
$$\eqalign{
& {\text{Let, }}\sin \left[ {{{\sin }^{ - 1}}\left( {\frac{1}{5}} \right) + {{\cos }^{ - 1}}x} \right] = 1 \cr
& \Rightarrow {\sin ^{ - 1}}\left( {\frac{1}{5}} \right) + {\cos ^{ - 1}}x = {\sin ^{ - 1}}1 \cr
& \Rightarrow {\sin ^{ - 1}}\left( {\frac{1}{5}} \right) + {\cos ^{ - 1}}x = \frac{\pi }{2} \cr
& \Rightarrow {\cos ^{ - 1}}x = \frac{\pi }{2} - {\sin ^{ - 1}}\left( {\frac{1}{5}} \right) = {\cos ^{ - 1}}\left( {\frac{1}{5}} \right) \cr
& \Rightarrow x = \frac{1}{5} \cr} $$
115.
The range of $$f\left( x \right) = {\sin ^{ - 1}}x + {\tan ^{ - 1}}x + {\sec ^{ - 1}}x$$ is
A
$$\left( {\frac{\pi }{4},\frac{{3\pi }}{4}} \right)$$
B
$$\left[ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right]$$
C
$$\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}$$
D
None of these
Answer :
$$\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}$$
View Solution
$$f\left( x \right) = {\sin ^{ - 1}}x + {\tan ^{ - 1}}x + {\sec ^{ - 1}}x;$$ clearly, the domain of $$f\left( x \right)$$ is $$x = \pm 1.$$ Thus the range is $$\left\{ {f\left( 1 \right),f\left( { - 1} \right)} \right\}{\text{, i}}{\text{.e}}{\text{., }}\left\{ {\frac{\pi }{4},\frac{{3\pi }}{4}} \right\}.$$
116.
$${\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x,$$ then $$\sin x = $$
A
$${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$
B
$${\cot ^2}\left( {\frac{\alpha }{2}} \right)$$
C
$$\tan \alpha $$
D
$${\cot}\left( {\frac{\alpha }{2}} \right)$$
Answer :
$${\tan ^2}\left( {\frac{\alpha }{2}} \right)$$
View Solution
$$\eqalign{
& {\cot ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x \cr
& {\tan ^{ - 1}}\left( {\frac{1}{{\sqrt {\cos \alpha } }}} \right) - {\tan ^{ - 1}}\left( {\sqrt {\cos \alpha } } \right) = x \cr
& \Rightarrow \,\,{\tan ^{ - 1}}\frac{{\frac{1}{{\sqrt {\cos \alpha } }} - \sqrt {\cos \alpha } }}{{1 + \frac{1}{{\sqrt {\cos \alpha } }}.\sqrt {\cos \alpha } }} = x \cr
& \Rightarrow \,\,{\tan ^{ - 1}}\frac{{1 - \cos \alpha }}{{2\sqrt {\cos \alpha } }} = x \cr
& \Rightarrow \,\,\tan x = \frac{{1 - \cos \alpha }}{{2\sqrt {\cos \alpha } }}\,\,{\text{or }}\cot x = \frac{{2\sqrt {\cos \alpha } }}{{1 - \cos \alpha }} \cr
& \Rightarrow \,\,\sin x = \frac{{1 - \cos \alpha }}{{1 + \cos \alpha }} \cr
& = \frac{{1 - \left( {1 - 2{{\sin }^2}\frac{\alpha }{2}} \right)}}{{1 + 2{{\cos }^2}\frac{\alpha }{2} - 1}}\,\,{\text{or }}\sin x = {\tan ^2}\frac{\alpha }{2} \cr} $$
117.
$$\theta = {\tan ^{ - 1}}\left( {2\,{{\tan }^2}\theta } \right) - {\tan ^{ - 1}}\left( {\frac{1}{3}\tan \theta } \right){\text{ then }}\tan \theta = $$
A
$$ - 2$$
B
$$ - 1$$
C
$$\frac{2}{3}$$
D
$$2$$
Answer :
$$ - 2$$
View Solution
$$\eqalign{
& \theta = {\tan ^{ - 1}}\left[ {\frac{{2\,{{\tan }^2}\theta - \frac{1}{3}\tan \theta }}{{1 + \frac{2}{3}{{\tan }^3}\theta }}} \right] \cr
& \Rightarrow \tan \theta = \frac{{6\,{{\tan }^2}\theta - \tan \theta }}{{3 + 2\,{{\tan }^3}\theta }} \cr
& \Rightarrow 1 = \frac{{6\tan \theta - 1}}{{3 + 2\,{{\tan }^3}\theta }}{\text{ or }}\tan \theta = 0 \cr
& \Rightarrow 2\,{\tan ^3}\theta - 6\tan \theta + 4 = 0 \cr
& \Rightarrow {\left( {\tan \theta - 1} \right)^2}\left( {\tan \theta + 2} \right) = 0 \cr
& \Rightarrow \tan \theta = 1;\tan \theta = - 2;\tan \theta = 0. \cr} $$