21.
The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$ is
A
zero
B
one
C
two
D
infinite
Answer :
two
View Solution
Clearly, $$x\left( {x + 1} \right) \geqslant 0$$ and $${x^2} + x + 1 \leqslant 1.$$ Together they imply $$x\left( {x + 1} \right) = 0.$$
∴ $$x = 0, -1.$$ When $$x = 0,$$ L.H.S. $$ = {\tan^{ - 1}}0 + {\sin ^{ - 1}}1 = \frac{\pi }{2}.$$
When $$x = -1,$$ L.H.S. $$ = {\tan^{ - 1}}0 + {\sin ^{ - 1}}\sqrt {1 - 1 + 1} = 0 + {\sin ^{ - 1}}1 = \frac{\pi }{2}.$$
22.
The range of the function $$f\left( x \right) = {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right) + \log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right);\,$$ (where [.] denotes the greatest integer function) is
A
$$R$$
B
$$\left[ {1,2} \right)$$
C
$$\left\{ {\log \frac{\pi }{2}} \right\}$$
D
$$\left\{ { - \sin 1} \right\}$$
Answer :
$$\left\{ {\log \frac{\pi }{2}} \right\}$$
View Solution
$$\eqalign{
& {\sin ^{ - 1}}\left( {\log \left[ x \right]} \right){\text{is defined if}}\, - 1 \leqslant \log \left[ x \right] \leqslant 1\,{\text{and }}\left[ x \right] > 0 \cr
& \Rightarrow \frac{1}{e} \leqslant \left[ x \right] \leqslant e \cr
& \Rightarrow \left[ x \right] = 1,2 \cr
& \Rightarrow x \in \left[ {1,3} \right) \cr
& {\text{Again}},\,\,\log \left( {{{\sin }^{ - 1}}\left[ x \right]} \right){\text{ is defined if}} \cr
& {\sin ^{ - 1}}\left[ x \right] > 0{\text{ and }} - 1 \leqslant \left[ x \right] \leqslant 1 \cr
& \Rightarrow \left[ x \right] > 0{\text{ and }} - 1 \leqslant \left[ x \right] \leqslant 1 \cr
& \Rightarrow 0 < \left[ x \right] \leqslant 1 \cr
& \Rightarrow x \in \left[ {1,2} \right) \cr
& \therefore {\text{Domain of }}f\left( x \right) = \left[ {1,2} \right) \cr
& {\text{For }}1 \leqslant x < 2,\left[ x \right] = 1 \cr
& \therefore f\left( x \right) = {\sin ^{ - 1}}0 + \log \frac{\pi }{2} = \log \frac{\pi }{2},\forall x \in \left[ {1,2} \right) \cr
& \therefore {\text{Range of }}f\left( x \right) = \left\{ {\log \frac{\pi }{2}} \right\} \cr} $$
23.
$${\cos ^{ - 1}}\left\{ {\frac{1}{2}{x^2} + \sqrt {1 - {x^2}} \cdot \sqrt {1 - \frac{{{x^2}}}{4}} } \right\} = {\cos ^{ - 1}}\frac{x}{2} - {\cos ^{ - 1}}x$$ holds for
A
$$\left| x \right| \leqslant 1$$
B
$$x \in R$$
C
$$0 \leqslant x \leqslant 1$$
D
$$ - 1 \leqslant x \leqslant 0$$
Answer :
$$0 \leqslant x \leqslant 1$$
View Solution
Clearly, $$0 \leqslant {\text{L}}{\text{.H}}{\text{.S}}{\text{.}} \leqslant \frac{\pi }{2}$$ because $${\cos ^{ - 1}}x$$ is in the first quadrant when $$x$$ is positive.
$$\therefore \,\,{\text{R}}{\text{.H}}{\text{.S}}{\text{.}} \geqslant 0.\,{\text{So,}}\,{\cos ^{ - 1}}\frac{x}{2} \geqslant {\cos ^{ - 1}}x.$$
Also $$\left| {\frac{x}{2}} \right| \leqslant 1,\left| x \right| \leqslant 1.$$ This means $$\left| x \right| \leqslant 1.$$
In $$0 \leqslant x \leqslant 1,$$ clearly $${\cos^{ - 1}}\frac{x}{2} \geqslant {\cos ^{ - 1}}x$$ because $${\cos ^{ - 1}}\alpha $$ increases as $$\alpha $$ decreases.
24.
If $$\alpha ,\beta $$ are roots of the equation $$6{x^2} + 11x + 3 = 0$$ then
A
both $${\cos ^{ - 1}}\alpha $$ and $${\cos ^{ - 1}}\beta $$ are real
B
both $${\operatorname{cosec} ^{ - 1}}\alpha $$ and $${\operatorname{cosec} ^{ - 1}}\beta $$ are real
C
both $${\cot ^{ - 1}}\alpha $$ and $${\cot ^{ - 1}}\beta $$ are real
D
None of these
Answer :
both $${\cot ^{ - 1}}\alpha $$ and $${\cot ^{ - 1}}\beta $$ are real
View Solution
$$\eqalign{
& 6{x^2} + 11x + 3 = 0 \cr
& \Rightarrow \,\,x = - \frac{1}{3}, - \frac{3}{2}\,{\text{and}} - 1 < - \frac{1}{3} < 1, - \frac{3}{2} < - 1. \cr} $$
$$\therefore \,\,{\cos^{ - 1}}\left( { - \frac{1}{3}} \right)$$ exists but $${\cos^{ - 1}}\left( { - \frac{3}{2}} \right)$$ does not;
$${\text{cose}}{{\text{c}}^{ - 1}}\left( { - \frac{3}{2}} \right)$$ exists but $${\text{cose}}{{\text{c}}^{ - 1}}\left( { - \frac{1}{3}} \right)$$ does not;
$${\cot ^{ - 1}}\left( { - \frac{1}{3}} \right)$$ and $${\cot ^{ - 1}}\left( { - \frac{3}{2}} \right)$$ exist.
25.
If $${\cos ^{ - 1}}\lambda + {\cos ^{ - 1}}\mu + {\cos ^{ - 1}} \nu = 3\pi $$ then $$\lambda \mu + \mu \nu + \nu \lambda $$ is equal to
A
$$- 3$$
B
$$0$$
C
$$3$$
D
$$- 1$$
Answer :
$$3$$
View Solution
$$0 \leqslant {\cos ^{ - 1}}x \leqslant \pi .$$ Hence, from the question, $${\cos^{ - 1}}\lambda = \pi ,{\cos ^{ - 1}}\mu = \pi ,{\cos ^{ - 1}} \nu = \pi $$
$$\therefore \,\,\lambda = \mu = \nu = - 1.$$
26.
Two angles of a triangle are $${\cot ^{ - 1}}2$$ and $${\cot ^{ - 1}}3.$$ Then the third angle is
A
$$\frac{\pi }{4}$$
B
$$\frac{3\pi }{4}$$
C
$$\frac{\pi }{6}$$
D
$$\frac{\pi }{3}$$
Answer :
$$\frac{3\pi }{4}$$
View Solution
The sum of the two given angles is
$$\eqalign{
& {\cot ^{ - 1}}\left( 2 \right) + {\cot ^{ - 1}}\left( 3 \right) = {\tan ^{ - 1}}\left( {\frac{1}{2}} \right) + {\tan ^{ - 1}}\left( {\frac{1}{3}} \right) \cr
& = {\tan ^{ - 1}}\left( 1 \right) = \frac{\pi }{4} \cr} $$
So, the third angle is $$\pi - \frac{\pi }{4} = \frac{{3\pi }}{4}$$
27.
The number of real solutions of $${\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} + {\sin ^{ - 1}}\sqrt {{x^2} + x + 1} = \frac{\pi }{2}$$ is
A
zero
B
one
C
two
D
infinite
Answer :
two
View Solution
$$\eqalign{
& {\tan ^{ - 1}}\sqrt {\left[ {x\left( {x + 1} \right)} \right]} = \frac{\pi }{2} - {\sin ^{ - 1}}\sqrt {\left( {{x^2} + x + 1} \right)} \cr
& \Rightarrow \,\,{\tan ^{ - 1}}\sqrt {x\left( {x + 1} \right)} = {\cos ^{ - 1}}\sqrt {{x^2} + x + 1} \cr
& \Rightarrow \,\,{\cos ^{ - 1}}\frac{1}{{\sqrt {{x^2} + x + 1} }} = {\cos ^{ - 1}}\sqrt {{x^2} + x + 1} \cr
& \Rightarrow \,\,{x^2} + x + 1 = 1 \cr
& \Rightarrow \,\,x\left( {x + 1} \right) = 0 \cr} $$
$$ \Rightarrow \,\,x = 0, - 1$$ are the only real solutions.
28.
If $$k \leqslant {\sin ^{ - 1}}x + {\cos ^{ - 1}}x + {\tan ^{ - 1}}x \leqslant K,$$ then
A
$$k = - \pi ,K = \pi $$
B
$$k = 0,K = \frac{{\pi }}{2}$$
C
$$k = \frac{\pi }{4},K = \frac{{3\pi }}{4}$$
D
$$k = 0 ,K = \pi $$
Answer :
$$k = \frac{\pi }{4},K = \frac{{3\pi }}{4}$$
View Solution
We have,
$$\eqalign{
& {\sin ^{ - 1}}x + {\cos ^{ - 1}}x + {\tan ^{ - 1}}x = \frac{\pi }{2} + {\tan ^{ - 1}}x \cr
& {\text{Now, }}{\sin ^{ - 1}}x\,\,{\text{and }}\,{\cos ^{ - 1}}x\,\,{\text{defined only if}} - 1 \leqslant x \leqslant 1 \cr
& {\text{So, }} - \frac{\pi }{4} \leqslant {\tan ^{ - 1}}x \leqslant \frac{\pi }{4} \cr
& \Rightarrow \frac{\pi }{4} \leqslant \frac{\pi }{2} + {\tan ^{ - 1}}x \leqslant \frac{{3\pi }}{4} \cr
& \therefore k = \frac{\pi }{4}{\text{ and }}\,K = \frac{{3\pi }}{4} \cr} $$
29.
$$ - \frac{{2\pi }}{5}$$ is the principal value of
A
$${\cos ^{ - 1}}\left( {\cos \frac{{7\pi }}{5}} \right)$$
B
$${\sin ^{ - 1}}\left( {\sin \frac{{7\pi }}{5}} \right)$$
C
$${\sec ^{ - 1}}\left( {\sec \frac{{7\pi }}{5}} \right)$$
D
None of these
Answer :
$${\sin ^{ - 1}}\left( {\sin \frac{{7\pi }}{5}} \right)$$
View Solution
$$\eqalign{
& {\cos ^{ - 1}}\left( {\cos \frac{{7\pi }}{5}} \right) = {\cos ^{ - 1}}\left\{ {\cos \left( {2\pi - \frac{{3\pi }}{5}} \right)} \right\} = {\cos ^{ - 1}}\cos \left( {\frac{{3\pi }}{5}} \right) = \frac{{3\pi }}{5}. \cr
& {\sin ^{ - 1}}\left( {\sin \frac{{7\pi }}{5}} \right) = {\sin ^{ - 1}}\left\{ {\sin \left( {\pi + \frac{{2\pi }}{5}} \right)} \right\} \cr
& {\sin ^{ - 1}}\left( {\sin \frac{{7\pi }}{5}} \right) = {\sin ^{ - 1}}\left\{ { - \sin \frac{{2\pi }}{5}} \right\} = {\sin ^{ - 1}}\left\{ {\sin \left( { - \frac{{2\pi }}{5}} \right)} \right\} = - \frac{{2\pi }}{5}. \cr
& {\sec ^{ - 1}}\left( {\sec \frac{{7\pi }}{5}} \right) = {\sec ^{ - 1}}\left\{ {\sec \left( {2\pi - \frac{{3\pi }}{5}} \right)} \right\} = {\sec ^{ - 1}}\left( {\sec \frac{{3\pi }}{5}} \right) = \frac{{3\pi }}{5}. \cr} $$
30.
If $${\tan ^{ - 1}}\left( {2x} \right) + {\tan ^{ - 1}}\left( {3x} \right) = \frac{\pi }{4}$$ then $$x$$ is equal to
A
$$ - 1$$
B
$$ - 2$$
C
$$1$$
D
$$2$$
Answer :
$$ - 1$$
View Solution
$$\eqalign{
& {\text{Given}}:{\tan ^{ - 1}}\left( {2x} \right) + {\tan ^{ - 1}}\left( {3x} \right) = \frac{\pi }{4} \cr
& \Rightarrow {\tan ^{ - 1}}\frac{{\left( {2x + 3x} \right)}}{{\left( {1 - 2x \cdot 3x} \right)}} = {\tan ^{ - 1}}\left( 1 \right) \cr
& \Rightarrow \frac{{5x}}{{1 - 6{x^2}}} = 1 \cr
& \Rightarrow 6{x^2} + 5x - 1 = 0 \cr
& \Rightarrow \left( {6x - 1} \right)\left( {x + 1} \right) = 0 \cr
& \Rightarrow x = \frac{1}{6}{\text{ or }} - 1. \cr} $$