Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

31. Complete solution set of $${\tan ^2}\left( {{{\sin }^{ - 1}}x} \right) > 1$$    is

A $$\left( { - 1, - \frac{1}{{\sqrt 2 }}} \right) \cup \left( {\frac{1}{{\sqrt 2 }},1} \right)$$
B $$\left( { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right) \sim \left\{ 0 \right\}$$
C $$\left( { - 1,1} \right) \sim \left\{ 0 \right\}$$
D None of these
Answer :   $$\left( { - 1, - \frac{1}{{\sqrt 2 }}} \right) \cup \left( {\frac{1}{{\sqrt 2 }},1} \right)$$

32. If $${x^2} + {y^2} + {z^2} = {r^2},$$    then $${\tan ^{ - 1}}\frac{{xy}}{{zr}} + {\tan ^{ - 1}}\frac{{yz}}{{xr}} + {\tan ^{ - 1}}\frac{{xz}}{{yr}} = $$

A $$\pi$$
B $$\frac{\pi }{2}$$
C $$0$$
D None of these
Answer :   $$\frac{\pi }{2}$$

33. The value of $$2{\tan ^{ - 1}}\frac{{\sqrt {1 + {x^2}} - 1}}{x}$$    is equal to

A $${\cot ^{ - 1}}x$$
B $${\sec ^{ - 1}}x$$
C $${\tan ^{ - 1}}x$$
D None of these
Answer :   $${\tan ^{ - 1}}x$$

34. The solution set of the equation $${\tan ^{ - 1}}x - {\cot ^{ - 1}}x = {\cos ^{ - 1}}\left( {2 - x} \right)$$       will lie in the interval

A $$\left[ {0,1} \right]$$
B $$\left[ {-1,1} \right]$$
C $$\left[ {1,3} \right]$$
D None of these
Answer :   $$\left[ {1,3} \right]$$

35. If $$ax + b\left( {\sec \left( {{{\tan }^{ - 1}}x} \right)} \right) = c\,$$     and $$ay + b\left( {\sec \left( {{{\tan }^{ - 1}}y} \right)} \right) = c,\,$$     then $$\frac{{x + y}}{{1 - xy}} = $$

A $$\frac{{ac}}{{{a^2} + {c^2}}}$$
B $$\frac{{2ac}}{{{a} - {c}}}$$
C $$\frac{{2ac}}{{{a^2} - {c^2}}}$$
D $$\frac{{a + c}}{{{1} - {ac}}}$$
Answer :   $$\frac{{2ac}}{{{a^2} - {c^2}}}$$

36. The set of values of $$k$$ for which $${x^2} - kx + {\sin ^{ - 1}}\left( {\sin 4} \right) > 0$$      for all real $$x$$ is

A $$\phi $$
B $$( -2, 2)$$
C $$R$$
D None of these
Answer :   $$\phi $$

37. If $$2{\tan ^{ - 1}}x + {\sin ^{ - 1}}\frac{{2x}}{{1 + {x^2}}}$$     is independent of $$x$$ then

A $$x \in \left[ {1, + \infty } \right)$$
B $$x \in \left[ { - 1,1} \right]$$
C $$x \in \left( { - \infty , - 1} \right]$$
D None of these
Answer :   $$x \in \left[ {1, + \infty } \right)$$

38. If $${\sin ^{ - 1}}\frac{1}{x} = {\sin ^{ - 1}}\frac{1}{a} + {\sin ^{ - 1}}\frac{1}{b},$$      then the value of $$x$$ is

A $$\frac{{ab}}{{\sqrt {{a^2} - 1} + \sqrt {{b^2} - 1} }}$$
B $$\frac{{ab}}{{\sqrt {{a^2} - 1} - \sqrt {{b^2} - 1} }}$$
C $$\frac{{2ab}}{{\sqrt {{a^2} - 1} + \sqrt {{b^2} - 1} }}$$
D None of these
Answer :   $$\frac{{ab}}{{\sqrt {{a^2} - 1} + \sqrt {{b^2} - 1} }}$$

39. The value of $$x$$ for which $$\sin \left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}x} \right)$$       is

A $$ \frac{1}{2}$$
B 1
C 0
D $$ - \frac{1}{2}$$
Answer :   $$ - \frac{1}{2}$$

40. Solving $$2\,{\cos ^{ - 1}}x = {\sin ^{ - 1}}\left( {2x\sqrt {1 - {x^2}} } \right),{\text{ we get}}$$

A $$x \in \left[ {\frac{{\sqrt 2 }}{2},1} \right]$$
B $$x = 3$$
C $$x \in \left[ {3,4} \right]$$
D $$x = 0$$
Answer :   $$x \in \left[ {\frac{{\sqrt 2 }}{2},1} \right]$$