Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths
Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
51.
The value of $${\tan ^2}\left( {{{\sec }^{ - 1}}2} \right) + {\cot ^2}\left( {{\text{cose}}{{\text{c}}^{ - 1}}3} \right)$$ is
56.
Total number of positive integral value $$'n'$$ so that the equations $${\cos ^{ - 1}}x + {\left( {{{\sin }^{ - 1}}y} \right)^2} = \frac{{n{\pi ^2}}}{4}\,$$ and $${\left( {{{\sin }^{ - 1}}y} \right)^2} - {\cos ^{ - 1}}x = \frac{{{\pi ^2}}}{{16}}\,$$ are consistent, is equal to
59.
If $$\alpha $$ satisfies the inequation $${x^2} - x - 2 > 0$$ then a value exists for
A
$${\sin ^{ - 1}}\alpha $$
B
$${\sec ^{ - 1}}\alpha $$
C
$${\cos ^{ - 1}}\alpha $$
D
None of these
Answer :
$${\sec ^{ - 1}}\alpha $$
$$\eqalign{
& {x^2} - x - 2 > 0 \cr
& \Rightarrow \,\,\left( {x - 2} \right)\left( {x + 1} \right) > 0 \cr} $$
$$ \Rightarrow \,\,x < - 1\,\,{\text{or, }}x > 2,$$ using sign scheme.
We know that $${\sin^{ - 1}}x$$ is defined for $$\left| x \right| \leqslant 1,{\cos ^{ - 1}}x$$ is defined for $$\left| x \right| \leqslant 1$$ and $${\sec^{ - 1}}x$$ is defined for $$\left| x \right| \geqslant 1,\,{\text{i}}{\text{.e}}{\text{., }}x \leqslant - 1\,\,{\text{or, }}x \geqslant 1.$$
60.
The equation $${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right) = 3\,{\sin ^{ - 1}}\left( x \right)$$ is true for all values of $$x$$ lying in which one of the following intervals ?
A
$$\left[ { - \frac{1}{2},\frac{1}{2}} \right]$$
B
$$\left[ {\frac{1}{2},1} \right]$$
C
$$\left[ { - 1, - \frac{1}{2}} \right]$$
D
$$\left[ { - 1,1} \right]$$
Answer :
$$\left[ { - 1,1} \right]$$
Let, $${\sin ^{ - 1}}x = \theta $$
$$ \Rightarrow x = \sin \theta $$
$$\eqalign{
& {\sin ^{ - 1}}\left( {3\sin \theta - 4\,{{\sin }^3}\theta } \right) = {\sin ^{ - 1}}\sin 3\theta \cr
& = 3\theta = 3\,{\sin ^{ - 1}}x \cr} $$
Equation $${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right) = 3\,{\sin ^{ - 1}}x$$ is true for all values of $$x$$ lying in the interval $$\left[ { - 1,1} \right].$$