Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The value of $${\tan ^2}\left( {{{\sec }^{ - 1}}2} \right) + {\cot ^2}\left( {{\text{cose}}{{\text{c}}^{ - 1}}3} \right)$$      is

A 13
B 15
C 11
D None of these
Answer :   11

52. The set of values of $$k$$ for which $${x^2} - kx + {\sin ^{ - 1}}\left( {\sin 4} \right) > 0$$      for all real $$x$$ is

A $$\phi $$
B $$\left( { - 2,2} \right)$$
C $$R$$
D $$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$$
Answer :   $$\phi $$

53. The value of $$\cos \left\{ {{{\tan }^{ - 1}}\left( {\tan \frac{{15\pi }}{4}} \right)} \right\}$$     is

A $$\frac{1}{{\sqrt 2 }}$$
B $$ - \frac{1}{{\sqrt 2 }}$$
C $$1$$
D None of these
Answer :   $$\frac{1}{{\sqrt 2 }}$$

54. The principal value of $${\cos ^{ - 1}}\left( { - \sin \frac{{7\pi }}{6}} \right)\,$$   is

A $${\frac{{5\pi }}{3}}$$
B $${\frac{{7\pi }}{6}}$$
C $${\frac{{\pi }}{3}}$$
D None of these
Answer :   $${\frac{{\pi }}{3}}$$

55. If $${\sin ^{ - 1}}x + {\sin ^{ - 1}}y + {\sin ^{ - 1}}z = \pi ,$$      then $${x^4} + {y^4} + {z^4} + 4{x^2}{y^2}{z^2} = k\left( {{x^2}{y^2} + {y^2}{z^2} + {z^2}{x^2}} \right).$$          where $$k =$$

A 1
B 2
C 4
D None of these
Answer :   2

56. Total number of positive integral value $$'n'$$ so that the equations $${\cos ^{ - 1}}x + {\left( {{{\sin }^{ - 1}}y} \right)^2} = \frac{{n{\pi ^2}}}{4}\,$$     and $${\left( {{{\sin }^{ - 1}}y} \right)^2} - {\cos ^{ - 1}}x = \frac{{{\pi ^2}}}{{16}}\,$$     are consistent, is equal to

A 1
B 4
C 3
D 2
Answer :   1

57. Let $$f\left( x \right) = {\sec ^{ - 1}}x + {\tan ^{ - 1}}x.$$     Then $$f\left( x \right)$$  is real for

A $$x \in \left[ { - 1,1} \right]$$
B $$x \in R$$
C $$x \in \left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right)$$
D None of these
Answer :   $$x \in \left( { - \infty , - 1} \right] \cup \left[ {1, + \infty } \right)$$

58. What is $$\sin \left[ {{{\cot }^{ - 1}}\left\{ {\cos \left( {{{\tan }^{ - 1}}x} \right)} \right\}} \right]$$      where $$x > 0,$$  equal to ?

A $$\sqrt {\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}} $$
B $$\sqrt {\frac{{\left( {{x^2} + 2} \right)}}{{\left( {{x^2} + 1} \right)}}} $$
C $${\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}}$$
D $${\frac{{\left( {{x^2} + 2} \right)}}{{\left( {{x^2} + 1} \right)}}}$$
Answer :   $$\sqrt {\frac{{\left( {{x^2} + 1} \right)}}{{\left( {{x^2} + 2} \right)}}} $$

59. If $$\alpha $$ satisfies the inequation $${x^2} - x - 2 > 0$$    then a value exists for

A $${\sin ^{ - 1}}\alpha $$
B $${\sec ^{ - 1}}\alpha $$
C $${\cos ^{ - 1}}\alpha $$
D None of these
Answer :   $${\sec ^{ - 1}}\alpha $$

60. The equation $${\sin ^{ - 1}}\left( {3x - 4{x^3}} \right) = 3\,{\sin ^{ - 1}}\left( x \right)$$      is true for all values of $$x$$ lying in which one of the following intervals ?

A $$\left[ { - \frac{1}{2},\frac{1}{2}} \right]$$
B $$\left[ {\frac{1}{2},1} \right]$$
C $$\left[ { - 1, - \frac{1}{2}} \right]$$
D $$\left[ { - 1,1} \right]$$
Answer :   $$\left[ { - 1,1} \right]$$