Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

61. If $$\left[ {{{\sin }^{ - 1}}{{\cos }^{ - 1}}{{\sin }^{ - 1}}{{\tan }^{ - 1}}x} \right] = 1,$$       where [.] denotes the greatest integer function, then $$x$$ belongs to the interval

A $$\left[ {\tan \sin \cos 1,\tan \sin \cos \sin 1} \right]$$
B $$\left( {\tan \sin \cos 1,\tan \sin \cos \sin 1} \right)$$
C $$\left[ {- 1, 1} \right]$$
D $$\left[ {\sin \cos \tan 1,\sin \cos \sin \tan 1} \right]$$
Answer :   $$\left[ {\tan \sin \cos 1,\tan \sin \cos \sin 1} \right]$$

62. The number of real solutions of $$\left( {x,y} \right),$$  where $$\left| y \right| = \sin x,y = {\cos ^{ - 1}}\left( {\cos x} \right), - 2\pi \leqslant x \leqslant 2\pi ,$$         is

A 2
B 1
C 3
D 4
Answer :   3

63. If $${\cos ^{ - 1}}\lambda + {\cos ^{ - 1}}\mu + {\cos ^{ - 1}}\gamma = 3\pi ,$$       then the value of $$\lambda \mu + \mu \gamma + \gamma \lambda $$    is

A 0
B 1
C 3
D 6
Answer :   3

64. The sum to the $$n$$ term of the series $${\text{cose}}{{\text{c}}^{ - 1}}\sqrt {10} + {\text{cose}}{{\text{c}}^{ - 1}}\sqrt {50} + {\text{cose}}{{\text{c}}^{ - 1}}\sqrt {170} + ..... + {\text{cose}}{{\text{c}}^{ - 1}}\sqrt {\left( {{n^2} + 1} \right)\left( {{n^2} + 2n + 2} \right)} {\text{ is}}$$

A $${\tan ^{ - 1}}\left( {n + 1} \right) - \frac{\pi }{4}$$
B $$\frac{\pi }{4}$$
C $${\tan ^{ - 1}}\left( {n + 1} \right)$$
D $$1$$
Answer :   $${\tan ^{ - 1}}\left( {n + 1} \right) - \frac{\pi }{4}$$

65. The formula $${\sin ^{ - 1}}\left\{ {2x\left( {1 - {x^2}} \right)} \right\} = 2\,{\sin ^{ - 1}}x$$       is true for all values of $$x$$ lying in the interval

A $$\left[ { - 1,1} \right]$$
B $$\left[ { 0,1} \right]$$
C $$\left[ { - 1,0} \right]$$
D $$\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]$$
Answer :   $$\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]$$

66. The sum of the infinite series $${\sin ^{ - 1}}\left( {\frac{1}{{\sqrt 2 }}} \right) + {\sin ^{ - 1}}\left( {\frac{{\sqrt 2 - 1}}{{\sqrt 6 }}} \right) + {\sin ^{ - 1}}\left( {\frac{{\sqrt 3 - \sqrt 2 }}{{\sqrt {12} }}} \right) + ..... + ..... + {\sin ^{ - 1}}\left( {\frac{{\sqrt n - \sqrt {\left( {n - 1} \right)} }}{{\sqrt {\left\{ {n\left( {n + 1} \right)} \right\}} }}} \right) + .....$$                     is

A $$\frac{\pi }{8}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{2}$$
D $$\pi$$
Answer :   $$\frac{\pi }{2}$$

67. If $${\sin ^{ - 1}}\left( {\frac{{2a}}{{1 + {a^2}}}} \right) - {\cos ^{ - 1}}\left( {\frac{{1 - {b^2}}}{{1 + {b^2}}}} \right) = {\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right),$$           then what is the value of $$x\,?$$

A $$\frac{a}{b}$$
B $$ab$$
C $$\frac{b}{a}$$
D $$\frac{{a - b}}{{1 + ab}}$$
Answer :   $$\frac{{a - b}}{{1 + ab}}$$

68. The number of real solutions of the equation $$\sqrt {1 + \cos 2x} = \sqrt 2 \,{\sin ^{ - 1}}\left( {\sin x} \right), - \pi \leqslant x \leqslant \pi ,$$         is

A 0
B 1
C 2
D infinite
Answer :   2

69. If $${\cot ^{ - 1}}\frac{n}{\pi } > \frac{\pi }{6},n \in N,$$     then the maximum value of $$n$$ is

A 1
B 5
C 9
D None of these
Answer :   5

70. If $${\sin ^{ - 1}}1 + {\sin ^{ - 1}}\frac{4}{5} = {\sin ^{ - 1}}x,$$      then what is $$x$$ equal to ?

A $$\frac{3}{5}$$
B $$\frac{4}{5}$$
C $$1$$
D $$0$$
Answer :   $$\frac{3}{5}$$