Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths
Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
If $$\left[ {{{\sin }^{ - 1}}{{\cos }^{ - 1}}{{\sin }^{ - 1}}{{\tan }^{ - 1}}x} \right] = 1,$$ where [.] denotes the greatest integer function, then $$x$$ belongs to the interval
62.
The number of real solutions of $$\left( {x,y} \right),$$ where $$\left| y \right| = \sin x,y = {\cos ^{ - 1}}\left( {\cos x} \right), - 2\pi \leqslant x \leqslant 2\pi ,$$ is
65.
The formula $${\sin ^{ - 1}}\left\{ {2x\left( {1 - {x^2}} \right)} \right\} = 2\,{\sin ^{ - 1}}x$$ is true for all values of $$x$$ lying in the interval
A
$$\left[ { - 1,1} \right]$$
B
$$\left[ { 0,1} \right]$$
C
$$\left[ { - 1,0} \right]$$
D
$$\left[ { - \frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right]$$
68.
The number of real solutions of the equation $$\sqrt {1 + \cos 2x} = \sqrt 2 \,{\sin ^{ - 1}}\left( {\sin x} \right), - \pi \leqslant x \leqslant \pi ,$$ is
A
0
B
1
C
2
D
infinite
Answer :
2
Here, $$\left| {\cos x} \right| = {\sin ^{ - 1}}\left( {\sin x} \right).$$
If, $$ - \frac{\pi }{2} \leqslant x \leqslant \frac{\pi }{2}\,{\text{then}}\,\,\cos x = x.$$
In the case there is one solution, obtained graphically.
If, $$\frac{\pi }{2} < x \leqslant \pi $$ then $$ - \cos x = {\sin ^{ - 1}}\left\{ {\sin \left( {\pi - x} \right)} \right\} = \pi - x.$$
$$\therefore \,\,\cos x = x - \pi .$$
In this case there is one solution, obtained graphically.
If, $$ - \pi \leqslant x < - \frac{\pi }{2}$$ then $$ - \cos x = {\sin ^{ - 1}}\left\{ {\sin \left( { - \pi - x} \right)} \right\} = - x - \pi ,\,{\text{i}}{\text{.e}}{\text{.,}}\cos x = x + \pi .$$
This gives no solution as can be seen from their graphs.
69.
If $${\cot ^{ - 1}}\frac{n}{\pi } > \frac{\pi }{6},n \in N,$$ then the maximum value of $$n$$ is
A
1
B
5
C
9
D
None of these
Answer :
5
$$\eqalign{
& {\cot ^{ - 1}}\frac{n}{\pi } > \frac{\pi }{6} \cr
& \Rightarrow \,\,\cot \left( {{{\cot }^{ - 1}}\frac{n}{\pi }} \right) < \cot \frac{\pi }{6} \cr
& \Rightarrow \,\,\frac{n}{\pi } < \sqrt 3 \cr
& \Rightarrow \,\,n < \sqrt 3 \pi = 5.5\left( {{\text{nearly}}} \right). \cr} $$
So, the maximum value of $$n$$ is $$5.$$
70.
If $${\sin ^{ - 1}}1 + {\sin ^{ - 1}}\frac{4}{5} = {\sin ^{ - 1}}x,$$ then what is $$x$$ equal to ?