Inverse Trigonometry Function MCQ Questions & Answers in Trigonometry | Maths

Learn Inverse Trigonometry Function MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

81. The value of $${\cot ^{ - 1}}7 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18$$      is

A $$\pi$$
B $$\frac{\pi }{2}$$
C $${\cot ^{ - 1}}5$$
D $${\cot ^{ - 1}}3$$
Answer :   $${\cot ^{ - 1}}3$$

82. If $${\sin ^{ - 1}}x - {\cos ^{ - 1}}x = \frac{\pi }{6}$$     then $$x$$ is

A $$\frac{1}{2}$$
B $$\frac{{\sqrt 3 }}{2}$$
C $$ - \frac{1}{2}$$
D None of these
Answer :   $$\frac{{\sqrt 3 }}{2}$$

83. The value of $$\cot \left( {{\text{cose}}{{\text{c}}^{ - 1}}\frac{5}{3} + {{\tan }^{ - 1}}\frac{2}{3}} \right)$$     is

A $$\frac{6}{{17}}$$
B $$\frac{3}{{17}}$$
C $$\frac{4}{{17}}$$
D $$\frac{5}{{17}}$$
Answer :   $$\frac{6}{{17}}$$

84. The sum of the infinite series $${\cot ^{ - 1}}2 + {\cot ^{ - 1}}8 + {\cot ^{ - 1}}18 + {\cot ^{ - 1}}32 + .....{\text{ is,}}$$

A $$\pi$$
B $$\frac{\pi }{2}$$
C $$\frac{\pi }{4}$$
D None of these
Answer :   $$\frac{\pi }{4}$$

85. The domain of the function $$f\left( x \right) = {\sin ^{ - 1}}\left\{ {{{\log }_2}\left( {\frac{1}{2}{x^2}} \right)} \right\}{\text{ is}}$$

A $$\left[ { - 2, - 1} \right) \cup \left[ {1,2} \right]$$
B $$\left( { - 2, - 1} \right] \cup \left[ {1,2} \right]$$
C $$\left[ { - 2, - 1} \right] \cup \left[ {1,2} \right]$$
D $$\left( { - 2, - 1} \right) \cup \left( {1,2} \right)$$
Answer :   $$\left[ { - 2, - 1} \right] \cup \left[ {1,2} \right]$$

86. If $${\sin ^{ - 1}}\left( {x - 1} \right) + {\cos ^{ - 1}}\left( {x - 3} \right) + {\tan ^{ - 1}}\left( {\frac{x}{{2 - {x^2}}}} \right) = {\cos ^{ - 1}}k + \pi ,$$             then the value of $$k$$ is

A $$1$$
B $$ - \frac{1}{{\sqrt 2 }}$$
C $$ \frac{1}{{\sqrt 2 }}$$
D None of these
Answer :   $$ \frac{1}{{\sqrt 2 }}$$

87. If $${\sin ^{ - 1}}\left( {x - \frac{{{x^2}}}{2} + \frac{{{x^3}}}{4} - .....} \right) + {\cos ^{ - 1}}\left( {{x^2} - \frac{{{x^4}}}{2} + \frac{{{x^6}}}{4} - .....} \right) = \frac{\pi }{2}$$             for $$0 < \left| x \right| < \sqrt 2 ,$$   then $$x$$ equals

A $$ \frac{1}{2}$$
B $$1$$
C $$ - \frac{1}{2}$$
D $$ - 1$$
Answer :   $$1$$

88. The principal value of $${\cos ^{ - 1}}\left\{ {\frac{1}{{\sqrt 2 }}\left( {\cos\frac{{9\pi }}{{10}} - \sin \frac{{9\pi }}{{10}}} \right)} \right\}$$       is

A $$\frac{{3\pi }}{{20}}$$
B $$\frac{{7\pi }}{{20}}$$
C $$\frac{{7\pi }}{{10}}$$
D None of these
Answer :   None of these

89. Let $${\tan ^{ - 1}}y = {\tan ^{ - 1}}x + {\tan ^{ - 1}}\left( {\frac{{2x}}{{1 - {x^2}}}} \right),$$        where $$\left| x \right| < \frac{1}{{\sqrt 3 }}.$$   Then a value of $$y$$ is:

A $$\frac{{3x - {x^3}}}{{1 + 3{x^2}}}$$
B $$\frac{{3x + {x^3}}}{{1 + 3{x^2}}}$$
C $$\frac{{3x - {x^3}}}{{1 - 3{x^2}}}$$
D $$\frac{{3x + {x^3}}}{{1 - 3{x^2}}}$$
Answer :   $$\frac{{3x - {x^3}}}{{1 - 3{x^2}}}$$

90. If $${\cos ^{ - 1}}x - {\cos ^{ - 1}}\frac{y}{2} = \alpha ,$$     then $$4{x^2} - 4xy\cos \alpha + {y^2}$$     is equal to

A $$2 \sin 2\alpha $$
B $$4$$
C $$4\,{\sin ^2}\alpha $$
D $$ - 4\,{\sin ^2}\alpha $$
Answer :   $$4\,{\sin ^2}\alpha $$