Properties and Solutons of Triangle MCQ Questions & Answers in Trigonometry | Maths
Learn Properties and Solutons of Triangle MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
51.
If in a $$\Delta \,ABC,$$ the altitudes from the vertices $$A, B, C$$ on opposite sides are in H.P, then $$\sin A, \sin B, \sin C$$ are in
A
G.P.
B
A.P.
C
A.P. - G.P.
D
H.P.
Answer :
A.P.
$$\eqalign{
& \Delta = \frac{1}{2}{p_1}a = \frac{1}{2}{p_2}b = \frac{1}{2}{p_3}b \cr
& {p_1},{p_2},{p_3}\,\,{\text{are in H}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,\frac{{2\Delta }}{a},\frac{{2\Delta }}{b},\frac{{2\Delta }}{c}\,\,{\text{are in H}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,\frac{1}{a},\frac{1}{b},\frac{1}{c}\,\,{\text{are in H}}{\text{.P}}{\text{.}} \cr
& \Rightarrow \,\,a,b,c\,\,{\text{are in A}}{\text{.P}}{\text{.}} \cr} $$
$$ \Rightarrow \,\,K\sin A,K\sin B,K\sin C$$ are in A.P.
$$ \Rightarrow \,\,\sin A,\sin B,\sin C\,\,{\text{are in A}}{\text{.P}}{\text{.}}$$
52.
In a $$\vartriangle ABC,\frac{{c + b}}{{c - b}} \cdot \tan \frac{A}{2}$$ is equal to
53.
From a point a metre above a lake the angle of elevation of a cloud is $$\alpha $$ and the angle of depression of its reflection is $$\beta .$$ The height of the cloud is
56.
If in an obtuse-angled triangle the obtuse angle is $$\frac{{3\pi }}{4}$$ and the other two angles are equal to two values of $$\theta $$ satisfying $$a\tan \theta + b\sec \theta = c,$$ where $$\left| b \right| \leqslant \sqrt {{a^2} + {c^2}} ,\,$$ then $${{a^2} - {c^2}}$$ is equal to
58.
A tower standing at right angles to the ground subtends an $${\sin ^{ - 1}}\frac{1}{3}$$ and $${\sin ^{ - 1}}\frac{1}{{\sqrt 5 }}$$ at two points $$A$$ and $$B$$ situated in a line through the foot of the tower and on the opposite sides. If $$AB = 50$$ units, then the height of the tower is :
A
$$50$$
B
$$25\sqrt 2 $$
C
$$50\left( {\sqrt 6 - 2} \right)$$
D
$$25\left( {\sqrt 2 - 1} \right)$$
Answer :
$$25\left( {\sqrt 2 - 1} \right)$$
$$\eqalign{
& {\sin ^{ - 1}}\frac{1}{3} = {\cot ^{ - 1}}2\sqrt 2 \cr
& {\text{and }}\,{\sin ^{ - 1}}\frac{1}{{\sqrt 5 }} = {\cot ^{ - 1}}2 \cr} $$
If $$C$$ is the foot of the tower and $$h$$ is the height, then
$$AC = h \cdot 2\sqrt 2 ,CB = h \cdot 2,h\left( {2\sqrt 2 + 2} \right) = 50$$
$$ \Rightarrow h = 25\left( {\sqrt 2 - 1} \right)$$
59.
A $$\vartriangle ABC$$ is right angled at $$B.$$ Then the diameter of the incircle of the triangle is