Properties and Solutons of Triangle MCQ Questions & Answers in Trigonometry | Maths
Learn Properties and Solutons of Triangle MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
If $$\cos A + \cos B + 2\cos C = 2$$ then the sides of the $$\vartriangle ABC$$ are in
62.
In a triangle $$ABC,$$ let $$\angle C = \frac{\pi }{2}.$$ If $$r$$ is the inradius and $$R$$ is the circumradius of the triangle, then $$2(r + R)$$ is equal to
A
$$a + b$$
B
$$b + c$$
C
$$c + a$$
D
$$a + b + c$$
Answer :
$$a + b$$
We know by Sine rule
$$\eqalign{
& \frac{c}{{\sin C}} = 2R \cr
& \Rightarrow \,\,C = 2R\sin C \cr
& \Rightarrow \,\,C = 2R\,\,\,\left( {\because \,\,\angle C = {{90}^ \circ }} \right) \cr
& \Rightarrow \,\,{\text{Also }}\tan \frac{C}{2} = \frac{r}{{s - c}} \cr
& \Rightarrow \,\,r = s - c\,\,\,\,\,\left( {\because \,\,\angle C = {{90}^ \circ }} \right) \cr
& \Rightarrow \,\,a + b - c = 2r \cr
& {\text{or }}2r + c = a + b \cr
& {\text{or 2}}r + 2R = a + b\,\,\left( {{\text{Using }}C = 2R} \right) \cr} $$
63.
In the figure, $$ABC$$ is a triangle in which $$C = {90^ \circ }$$ and $$AB = 5\,cm.$$ $$D$$ is a point on $$AB$$ such that $$AD = 3\,cm$$ and $$\angle ACD = {60^ \circ }.$$ Then the length of $$AC$$ is
A
$$5\sqrt {\frac{3}{7}} \,cm$$
B
$$\sqrt {\frac{7}{3}} \,cm$$
C
$$\frac{3}{{\sqrt 7 }}\,cm$$
D
None of these
Answer :
$$5\sqrt {\frac{3}{7}} \,cm$$
Using $$\left( {m + n} \right)\cot \theta = n\cot \beta - m\cot \alpha ,$$ we get,
$$\eqalign{
& \left( {3 + 2} \right)\cot \angle CDA = 2\cot {30^ \circ } - 3\cot {60^ \circ } \cr
& \Rightarrow \,\,\cot \angle CDA = \frac{{\sqrt 3 }}{5}. \cr} $$
Now use sine rule in $$\vartriangle CDA.$$
64.
The sum of the radii of inscribed and circumscribed circles for an $$n$$ sided regular polygon of side $$a,$$ is
A
$$\frac{a}{4}\cot \left( {\frac{\pi }{{2n}}} \right)$$
B
$$a\cot \left( {\frac{\pi }{{n}}} \right)$$
C
$$\frac{a}{2}\cot \left( {\frac{\pi }{{2n}}} \right)$$
66.
The sides of a triangle are $${\sin \alpha , \cos \alpha }$$ and $$\sqrt {1 + \sin \alpha \cos \alpha } $$ for some $$0 < \alpha < \frac{\pi }{2}.$$ Then the greatest angle of the triangle is
A
150°
B
90°
C
120°
D
60°
Answer :
120°
Let $$a = \sin \alpha ,b = \cos \alpha \,\,{\text{and }}c = \sqrt {1 + \sin \alpha \cos \alpha } $$
Clearly $$a$$ and $$b < 1$$ but $$c > 1$$ as $$\sin \alpha > 0\,\,{\text{and}}\,\,\cos \alpha > 0$$
∴ $$c$$ is the greatest side and greatest angle is $$C$$
$$\eqalign{
& \therefore \,\,\cos C = \frac{{{a^2} + {b^2} - {c^2}}}{{2ab}} \cr
& = \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha - 1 - \sin \alpha \cos \alpha }}{{2\sin \alpha \cos \alpha }} = - \frac{1}{2} \cr
& \therefore \,\,C = {120^ \circ } \cr} $$
67.
The sides of a triangle are $$3x + 4y, 4x + 3y$$ and $$5x + 5y$$ where $$x, y > 0$$ then the triangle is
A
right angled
B
obtuse angled
C
equilateral
D
none of these
Answer :
obtuse angled
Let $$a = 3x + 4y, b = 4x + 3y$$ and $$c = 5x + 5y$$
as $$x, y > 0, c = 5x + 5y$$ is the largest side
∴ $$C$$ is the largest angle . Now
$$\eqalign{
& \cos C = \frac{{{{\left( {3x + 4y} \right)}^2} + {{\left( {4x + 3y} \right)}^3} - {{\left( {5x + 5y} \right)}^2}}}{{2\left( {3x + 4y} \right)\left( {4x + 3y} \right)}} \cr
& = \frac{{ - 2xy}}{{2\left( {3x + 4y} \right)\left( {4x + 3y} \right)}} < 0 \cr} $$
∴ $$C$$ is obtuse angle
⇒ $$\Delta ABC$$ is obtuse angled
68.
A vertical tower standing on a levelled field is mounted with a vertical flag staff of length $$3\,m.$$ From a point on the field, the angles of elevation of the bottom and tip of the flag staff are $${30^ \circ }$$ and $${45^ \circ }$$ respectively. Which one of the following gives the best approximation to the height of the tower ?
70.
Two sides of a triangle are given by the roots of the equation $${x^2} - 2\sqrt 3 x + 2 = 0.$$ The angle between the sides is $$\frac{\pi }{3}.$$ The perimeter of the triangle is