Properties and Solutons of Triangle MCQ Questions & Answers in Trigonometry | Maths
Learn Properties and Solutons of Triangle MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
81.
From the top of a light-house 60 metres high with its base at the sea-level, the angle of depression of a boat is 15°. The distance of the boat from the foot of the light house is
A
$$\left( {\frac{{\sqrt 3 - 1}}{{\sqrt 3 + 1}}} \right)60\,{\text{metres}}$$
B
$$\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)60\,{\text{metres}}$$
C
$${\left( {\frac{{\sqrt 3 + 1}}{{\sqrt 3 - 1}}} \right)^2}{\text{metres}}$$
83.
The ratio of the distances of the orthocentre of an acute-angled $$\vartriangle ABC$$ from the sides $$BC, AC$$ and $$AB$$ is
A
$$\cos A:\cos B:\cos C$$
B
$$\sin A:\sin B:\sin C$$
C
$$\sec A:\sec B:\sec C$$
D
None of these
Answer :
$$\sec A:\sec B:\sec C$$
$$\eqalign{
& HD = BD \cdot \tan \angle EBC = c\cos B \cdot \tan \left( {{{90}^ \circ } - C} \right) \cr
& HD = \frac{{c\cos B \cdot \cos C}}{{\sin C}} = 2R\cos B\cos C \cr
& HD = \frac{{2R\cos A\cos B\cos C}}{{\cos A}}. \cr} $$
Similarly for others. So, the ratio of the distances of the orthocentre from the sides $$ = \frac{1}{{\cos A}}:\frac{1}{{\cos B}}:\frac{1}{{\cos C}}.$$
84.
If in a $$\vartriangle ABC,c\,{\cos ^2}\frac{A}{2} + a\,{\cos ^2}\frac{C}{2} = \frac{{3b}}{2},$$ then $$a,b,c$$ are in
85.
The angle of elevation of the top of a tower from two places situated at distances $$21\,m.$$ and $$x\,m.$$ from the base of the tower are $${45^ \circ }$$ and $${60^ \circ }$$ respectively. What is the value of $$x\,?$$
86.
If in a $$\Delta \,ABC\,\,a\,{\cos ^2}\left( {\frac{C}{2}} \right) + c\,{\cos ^2}\left( {\frac{A}{2}} \right) = \frac{{3b}}{2},$$ then the sides $$a, b$$ and $$c$$
A
satisfy $$a + b = c$$
B
are in A.P.
C
are in G.P.
D
are in H.P.
Answer :
are in A.P.
If $$a\,{\cos ^2}\left( {\frac{C}{2}} \right) + c\,{\cos ^2}\left( {\frac{A}{2}} \right) = \frac{{3b}}{2}$$
$$\eqalign{
& a\left[ {\cos C + 1} \right] + c\left[ {\cos A + 1} \right] = 3b \cr
& \left( {a + c} \right) + \left( {a\cos C + c\cos B} \right) = 3b \cr} $$
$$a + c + b = 3b\,\,{\text{or }}\,a + c = 2b\,\,{\text{or}}$$ $$a, b, c$$ are in A.P.
87.
If the bisector of the angle $$P$$ of a triangle $$PQR$$ meets $$QR$$ in $$S,$$ then
A
$$QS = SR$$
B
$$QS : SR = PR : PQ$$
C
$$QS : SR = PQ : PR$$
D
None of these
Answer :
$$QS : SR = PQ : PR$$
$$QS : SR = PQ : PR$$ (as bisector of an angle, in a triangle, divides the opposite side in the same ratio as the sides containing the angle.)
88.
Given that $$a, b, c$$ are the sides of a triangle $$ABC$$ which is right angled at $$C,$$ then the minimum value of $${\left( {\frac{c}{a} + \frac{c}{b}} \right)^2}$$ is
90.
Each side of an equilateral triangle subtends an angle of $${60^ \circ }$$ at the top of a tower $$h\, m$$ high located at the centre of the triangle. If $$a$$ is the length of each of side of the triangle, then
A
$$3{a^2} = 2{h^2}$$
B
$$2{a^2} = 3{h^2}$$
C
$${a^2} = 3{h^2}$$
D
$$3{a^2} = {h^2}$$
Answer :
$$2{a^2} = 3{h^2}$$
Let $$QT$$ be the tower of height $$\left( h \right)$$ in $$\Delta \,PRS.$$
Now, each triangle $$QPR, QRS, QSP$$ are equilateral.
Thus, $$QP = QS = QR = a.$$
In $$\Delta \,QTP,$$
$$\eqalign{
& Q{P^2} = Q{T^2} + P{T^2} \cr
& \Rightarrow {a^2} = {h^2} + {\left( {\frac{a}{2}\sec {{30}^ \circ }} \right)^2} \cr} $$
$$\eqalign{
& \Rightarrow {a^2} = {h^2} + \frac{{{a^2}}}{4} \cdot \frac{4}{3} \cr
& \Rightarrow {a^2} = {h^2} + \frac{{{a^2}}}{3} \cr
& \Rightarrow {a^2} - \frac{{{a^2}}}{3} = {h^2} \cr
& \Rightarrow \frac{{3{a^2} - {a^2}}}{3} = {h^2} \cr
& \therefore 2{a^2} = 3{h^2} \cr} $$