Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths

Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

11. The least difference between the roots, in the first quadrant $$\left( {0 \leqslant x \leqslant \frac{\pi }{2}} \right),$$   of the equation $$4\cos x\left( {2 - 3\,{{\sin }^2}x} \right) + \left( {\cos 2x + 1} \right) = 0{\text{ is}}$$

A $$\frac{\pi }{6}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{3}$$
D $$\frac{\pi }{2}$$
Answer :   $$\frac{\pi }{6}$$

12. The least positive nonintegral solution of $$\sin \pi \left( {{x^2} + x} \right) - \sin \pi {x^2} = 0$$      is

A rational
B irrational of the form $$\sqrt p $$
C irrational of the form $$\frac{{\sqrt p - 1}}{4},$$  where $$p$$ is an odd integer
D irrational of the form $$\frac{{\sqrt p + 1}}{4},$$  where $$p$$ is an even integer
Answer :   irrational of the form $$\frac{{\sqrt p - 1}}{4},$$  where $$p$$ is an odd integer

13. The number of solutions of the equation $${x^3} + {x^2} + 4x + 2\sin x = 0$$      in $$0 \leqslant x \leqslant 2\pi $$   is

A zero
B one
C two
D four
Answer :   one

14. The equation $$p\cos x - q\sin x = r$$    admits of a solution for $$x$$ only if

A $$r < \max \left\{ {p,q} \right\}$$
B $$ - \sqrt {{p^2} + {q^2}} < r < \sqrt {{p^2} + {q^2}} $$
C $${r^2} = {p^2} + {q^2}$$
D None of these
Answer :   None of these

15. The equation $${\sin ^4}x - \left( {k + 2} \right){\sin ^2}x - \left( {k + 3} \right) = 0$$       possesses a solution if

A $$k > - 3$$
B $$k < - 2$$
C $$ - 3 \leqslant k \leqslant - 2$$
D $$k$$ is any positive integer
Answer :   $$ - 3 \leqslant k \leqslant - 2$$

16. If $$0 \leqslant x \leqslant 2\pi ,0 \leqslant y \leqslant 2\pi $$     and $$\sin x + \sin y = 2$$    then the value of $$x + y$$  is

A $$\pi $$
B $$\frac{\pi }{2}$$
C $$3\pi $$
D None of these
Answer :   $$\pi $$

17. Let $$\alpha ,\beta $$  be any two positive values of $$x$$ for which $$2\cos x,\left| {\cos x} \right|$$   and $$1 - 3\,{\cos ^2}x$$   are in G.P. The minimum value of $$\left| {\alpha - \beta } \right|$$  is

A $$\frac{\pi }{3}$$
B $$\frac{\pi }{4}$$
C $$\frac{\pi }{2}$$
D None of these
Answer :   None of these

18. If $$\mathop {\max }\limits_{\theta \,\, \in \,\,R} \left\{ {5\sin \theta + 3\sin \left( {\theta - \alpha } \right)} \right\} = 7$$       then the set of possible values of $$\alpha $$ is

A $$\left\{ {\left. x \right|x = 2n\pi \pm \frac{{\pi }}{3};n \in {\Bbb Z}} \right\}$$
B $$\left\{ {\left. x \right|x = 2n\pi \pm \frac{{2\pi }}{3};n \in {\Bbb Z}} \right\}$$
C $$\left[ {\frac{\pi }{3},\frac{{2\pi }}{3}} \right]$$
D None of these
Answer :   $$\left\{ {\left. x \right|x = 2n\pi \pm \frac{{\pi }}{3};n \in {\Bbb Z}} \right\}$$

19. If $$\cos x - \sin x \geqslant 1$$    and $$0 \leqslant x \leqslant 2\pi $$   then the solution set for $$x$$ is

A $$\left[ {0,\frac{\pi }{4}} \right] \cup \left[ {\frac{{7\pi }}{4},2\pi } \right]$$
B $$\left[ {\frac{{3\pi }}{2},\frac{{7\pi }}{4}} \right] \cup \left\{ 0 \right\}$$
C $$\left[ {\frac{{3\pi }}{2},2\pi } \right] \cup \left\{ 0 \right\}$$
D None of these
Answer :   $$\left[ {\frac{{3\pi }}{2},2\pi } \right] \cup \left\{ 0 \right\}$$

20. If $$4\,{\sin ^2}x - 8\sin x + 3 \leqslant 0,0 \leqslant x \leqslant 2\pi ,$$        then the solution set for $$x$$ is

A $$\left[ {0,\frac{\pi }{6}} \right]$$
B $$\left[ {0,\frac{5\pi }{6}} \right]$$
C $$\left[ {\frac{{5\pi }}{6},2\pi } \right]$$
D $$\left[ {\frac{\pi }{6},\frac{{5\pi }}{6}} \right]$$
Answer :   $$\left[ {\frac{\pi }{6},\frac{{5\pi }}{6}} \right]$$