Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths

Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

21. The number of values of $$x$$ for which $$\sin 2x + \cos 4x = 2$$     is

A 0
B 1
C 2
D infinite
Answer :   0

22. The number of solutions of the equation $$\sin \left( {\frac{{\pi x}}{{2\sqrt 3 }}} \right) = {x^2} - 2\sqrt 3 \,x + 4$$

A forms an empty set
B is only one
C is only two
D is more than 2
Answer :   is only one

23. Let $$n$$ be a fixed positive integer such that $$\sin \left( {\frac{\pi }{{2n}}} \right) + \cos \left( {\frac{\pi }{{2n}}} \right) = \frac{{\sqrt n }}{2},{\text{then :}}$$

A $$n = 4$$
B $$n = 5$$
C $$n = 6$$
D None of these
Answer :   $$n = 6$$

24. The sum of all the solutions of the equation $$\cos x \cdot \cos \left( {\frac{\pi }{3} + x} \right) \cdot \cos \left( {\frac{\pi }{3} - x} \right) = \frac{1}{4},x \in \left[ {0,6\pi } \right]$$          is

A $${15\pi }$$
B $${30\pi }$$
C $${\frac{110\pi }{3}}$$
D None of these
Answer :   $${30\pi }$$

25. The number of solutions of $$\cos x = \left| {1 + \sin x} \right|,0 \leqslant x \leqslant 3\pi ,$$      is

A 3
B 2
C 4
D None of these
Answer :   3

26. $$\cos \left( {\alpha - \beta } \right) = 1\,{\text{and }}\cos \left( {\alpha + \beta } \right) = \frac{1}{e}$$       where $$\alpha ,\beta \in \left[ { - \pi ,\pi } \right].$$   Pairs of $$\alpha ,\beta $$  which satisfy both the equations is/are

A 0
B 1
C 2
D 4
Answer :   4

27. The number of solutions of the equation $${\sin ^5}x - {\cos ^5}x = \frac{1}{{\cos x}} - \frac{1}{{\sin x}}\left( {\sin x \ne \cos x} \right){\text{ is}}$$

A 0
B 1
C infinite
D None of these
Answer :   0

28. The solution set of the system of equation $$x + y = \frac{{2\pi }}{3},\cos x + \cos y = \frac{3}{2},$$       where $$x$$ and $$y$$ are real, is

A $$x = \frac{\pi }{3} - n\pi ,y = n\pi $$
B $$\phi $$
C $$x = n\pi ,y = \frac{\pi }{3} - n\pi $$
D None of these
Answer :   $$\phi $$

29. The most general values of $$x$$ for which $$\sin x + \cos x = \mathop {\min }\limits_{a\,\, \in \,\,R} \left\{ {1,{a^2} - 4a + 6} \right\}\,$$       are given by

A $$2n\pi $$
B $$2n\pi + \frac{\pi }{2}$$
C $$n\pi + {\left( { - 1} \right)^n} \cdot \frac{\pi }{4} - \frac{\pi }{4}$$
D None of these
Answer :   $$n\pi + {\left( { - 1} \right)^n} \cdot \frac{\pi }{4} - \frac{\pi }{4}$$

30. If $$x \ne \frac{{n\pi }}{2}$$  and $${\left( {\cos x} \right)^{{{\sin }^2}x - 3\sin x + 2}} = 1$$     then all solutions of $$x$$ are given by

A $$2n\pi + \frac{\pi }{2}$$
B $$\left( {2n + 1} \right)\pi - \frac{\pi }{2}$$
C $$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{2}$$
D None of these
Answer :   None of these