Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths
Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
31.
The number of values of $$x \in \left[ {0,2\pi } \right]$$ that satisfy $$\cot x - {\text{cosec}}\,x = 2\sin x$$ is
A
3
B
2
C
1
D
0
Answer :
0
$$\eqalign{
& {\text{Here, }}\left( {2\cos x + 3} \right)\left( {\cos x - 1} \right) = 0;\,{\text{but }}\left| {\cos x} \right| \leqslant 1. \cr
& {\text{So, }}\cos x = 1 \cr
& \Rightarrow \,\,x = 2n\pi \cr
& \therefore \,\,x = 0,2\pi . \cr} $$
None of these values satisfies the given equation.
32.
If the equation $${a_1} + {a_2}\cos 2x + {a_3}{\sin ^2}x = 1$$ is satisfied by every real value of $$x$$ then the number of possible values of the triplet $$\left( {{a_1},{a_2},{a_3}} \right)$$ is
A
0
B
1
C
3
D
infinite
Answer :
infinite
$$\eqalign{
& {a_1} + {a_2}\left( {2{{\cos }^2}x - 1} \right) + {a_3}\left( {1 - {{\cos }^2}x} \right) = 1 \cr
& {\text{or, }}\left( {2{a_2} - {a_3}} \right){\cos ^2}x + \left( {{a_1} - {a_2} + {a_3} - 1} \right) = 0. \cr} $$
This can hold for all $$x$$ if $$2{a_2} - {a_3} = 0\,\,{\text{and }}{a_1} - {a_2} + {a_3} - 1 = 0.$$
As there are two equations in three unknowns, the number of solutions is infinite.
33.
The number of solutions of $$\cos \theta + \sqrt 3 \sin \theta = 5,0 \leqslant \theta \leqslant 5\pi ,$$ is
A
4
B
0
C
5
D
None of these
Answer :
0
$$\left| {\frac{5}{{\sqrt {{1^2} + {{\left( {\sqrt 3 } \right)}^2}} }}} \right| \leqslant 1$$ is not true. So, there is no solution.
34.
General solution of the equation $$\left( {\sqrt 3 - 1} \right)\sin \theta + \left( {\sqrt 3 + 1} \right)\cos \theta = 2{\text{ is}}$$
A
$$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$$
B
$$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{2}$$
C
$$2n\pi \pm \frac{\pi }{4} - \frac{\pi }{{12}}$$
40.
If $$ - \pi \leqslant x \leqslant \pi , - \pi \leqslant y \leqslant \pi $$ and $$\cos x + \cos y = 2$$ then the value $$\cos \left( {x - y} \right)$$ is
A
$$- 1$$
B
$$0$$
C
$$1$$
D
None of these
Answer :
$$1$$
$$\max \cos \theta = 1.$$ So, the equation can have solution only when $$\cos x = 1,\cos y = 1$$
$$\eqalign{
& \Rightarrow \,\,x = 0,y = 0 \cr
& \Rightarrow \,\,\cos \left( {x - y} \right) = \cos {0^ \circ } = 1. \cr} $$