42.
The value of $$x \in \left[ { - 2\pi ,2\pi } \right]$$ such that $$\frac{{\sin x + i\cos x}}{{1 + i}},i = \sqrt { - 1} ,$$ is purely imaginary, are given by
A
$$n\pi - \frac{\pi }{4}$$
B
$$n\pi + \frac{\pi }{4}$$
C
$$n\pi$$
D
None of these
Answer :
$$n\pi - \frac{\pi }{4}$$
$$\eqalign{
& \frac{{\sin x + i\cos x}}{{1 + i}} = \frac{{\left( {1 - i} \right)\left( {\sin x + i\cos x} \right)}}{{\left( {1 + i} \right)\left( {1 - i} \right)}} \cr
& \frac{{\sin x + i\cos x}}{{1 + i}} = \frac{{\sin x + \cos x + i\left( {\cos x - \sin x} \right)}}{2},\,\,{\text{which is purely imaginary}} \cr
& \Rightarrow \,\,\sin x + \cos x = 0 \cr
& \Rightarrow \,\,\tan x = - 1 \cr
& \therefore \,\,x = n\pi - \frac{\pi }{4}. \cr} $$
43.
The most general solutions of $${2^{1 + \left| {\cos x} \right|\, + \,\,{{\cos }^2}x\, + \,{{\left| {\cos x} \right|}^3}\, + \,.....{\text{to }}\infty }} = 4$$ are given by
45.
Let $$S = \left\{ {\theta \in \left[ { - 2\pi ,2\pi } \right]:2\,{\cos^2}\theta + 3\sin \theta = 0} \right\}.$$ Then the sum of the elements of $$S$$ is:
46.
The number of solutions of $$\left| {\cos x} \right| = \sin x,0 \leqslant x \leqslant 4\pi ,$$ is
A
8
B
4
C
2
D
None of these
Answer :
4
$$\eqalign{
& {\text{If}}\,\cos x \geqslant 0,\,{\text{i}}{\text{.e}}{\text{., }}x \in \left[ {0,\frac{\pi }{2}} \right] \cup \left[ {\frac{{3\pi }}{2},\frac{{5\pi }}{2}} \right] \cup \left[ {\frac{{7\pi }}{2},4\pi } \right]{\text{then }}\cos x = \sin x. \cr
& \therefore \,\,\tan x = 1\,\,\,{\text{or, }}x = n\pi + \frac{\pi }{4} = \frac{\pi }{4},\frac{{5\pi }}{4},\frac{{9\pi }}{4},\frac{{13\pi }}{4}. \cr} $$
∴ if $$\cos x \geqslant 0,$$ the possible values of $$x$$ are $$\frac{\pi }{4},\frac{{9\pi }}{4}.$$
$$\eqalign{
& {\text{If }}\cos x < 0,\,{\text{i}}{\text{.e}}{\text{., }}x \in \left( {\frac{\pi }{2},\frac{{3\pi }}{2}} \right) \cup \left( {\frac{{5\pi }}{2},\frac{{7\pi }}{2}} \right)\,{\text{then }} - \cos x = \sin x. \cr
& \therefore \,\,\tan x = - 1\,\,\,\,{\text{or, }}x = n\pi - \frac{\pi }{4} = \frac{{3\pi }}{4},\frac{{7\pi }}{4},\frac{{11\pi }}{4},\frac{{15\pi }}{4}. \cr} $$
∴ if $$\cos x < 0$$ the possible values of $$x$$ are $$\frac{{3\pi }}{4},\frac{{11\pi }}{4}.$$
47.
For what values of $$x$$ is the equation $$2\sin \theta = x + \frac{1}{x}$$ valid ?
A
$$x = \pm 1$$
B
All real values of $$x$$
C
$$ - 1 < x < 1$$
D
$$x > 1$$ and $$x < - 1$$
Answer :
$$x = \pm 1$$
$$\eqalign{
& {\text{Given}}:2\sin \theta = x + \frac{1}{x} \cr
& {\text{we know that}}\,\, - 1 \leqslant \sin \theta < 1, - 2 \leqslant 2\sin \theta < 2 \cr
& {\text{So}},\,\, - 2 \leqslant x + \frac{1}{x} < 2 \cr} $$
Thus, the given equation is valid only if $$x = \pm 1$$
48.
If $$3\,{\sin ^2}\theta + 2\,{\sin ^2}\phi = 1$$ and $$3\sin 2\theta = 2\sin 2\phi ,0 < \theta < \frac{\pi }{2}$$ and $$0 < \phi < \frac{\pi }{2},$$ then the value of $$\theta + 2\phi $$ is