Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths

Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

41. The general values of $$\theta $$ satisfying the equation $$2\,{\sin ^2}\theta - 3\sin \theta - 2 = 0$$     is

A $$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{6}$$
B $$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{2}$$
C $$n\pi + {\left( { - 1} \right)^n}\frac{5\pi }{6}$$
D $$n\pi + {\left( { - 1} \right)^n}\frac{7\pi }{6}$$
Answer :   $$n\pi + {\left( { - 1} \right)^n}\frac{7\pi }{6}$$

42. The value of $$x \in \left[ { - 2\pi ,2\pi } \right]$$   such that $$\frac{{\sin x + i\cos x}}{{1 + i}},i = \sqrt { - 1} ,$$      is purely imaginary, are given by

A $$n\pi - \frac{\pi }{4}$$
B $$n\pi + \frac{\pi }{4}$$
C $$n\pi$$
D None of these
Answer :   $$n\pi - \frac{\pi }{4}$$

43. The most general solutions of $${2^{1 + \left| {\cos x} \right|\, + \,\,{{\cos }^2}x\, + \,{{\left| {\cos x} \right|}^3}\, + \,.....{\text{to }}\infty }} = 4$$       are given by

A $$n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$
B $$2n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$
C $$2n\pi \pm \frac{2\pi }{3},n \in {\Bbb Z}$$
D None of these
Answer :   $$n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$

44. The set of values of $$x$$ for which $$\sin x \cdot {\cos ^3}x > \cos x \cdot {\sin ^3}x,0 \leqslant x \leqslant 2\pi ,$$        is

A $$\left( {0,\pi } \right)$$
B $$\left( {0,\frac{\pi }{4}} \right)$$
C $$\left( {\frac{\pi }{4},\pi } \right)$$
D None of these
Answer :   $$\left( {0,\frac{\pi }{4}} \right)$$

45. Let $$S = \left\{ {\theta \in \left[ { - 2\pi ,2\pi } \right]:2\,{\cos^2}\theta + 3\sin \theta = 0} \right\}.$$        Then the sum of the elements of $$S$$ is:

A $$\frac{{13\pi }}{6}$$
B $$\frac{{5\pi }}{3}$$
C 2
D None of these
Answer :   2

46. The number of solutions of $$\left| {\cos x} \right| = \sin x,0 \leqslant x \leqslant 4\pi ,$$      is

A 8
B 4
C 2
D None of these
Answer :   4

47. For what values of $$x$$ is the equation $$2\sin \theta = x + \frac{1}{x}$$    valid ?

A $$x = \pm 1$$
B All real values of $$x$$
C $$ - 1 < x < 1$$
D $$x > 1$$  and $$x < - 1$$
Answer :   $$x = \pm 1$$

48. If $$3\,{\sin ^2}\theta + 2\,{\sin ^2}\phi = 1$$    and $$3\sin 2\theta = 2\sin 2\phi ,0 < \theta < \frac{\pi }{2}$$      and $$0 < \phi < \frac{\pi }{2},$$   then the value of $$\theta + 2\phi $$  is

A $$\frac{\pi }{2}$$
B $$\frac{\pi }{4}$$
C $$0$$
D None of these
Answer :   $$\frac{\pi }{2}$$

49. The number of real solutions of $$\sin {e^x} \cdot \cos {e^x} = {2^{x - 2}} + {2^{ - x - 2}}$$      is

A zero
B one
C two
D infinite
Answer :   zero

50. If $$x \in \left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right],$$    the greatest positive solution of $$1 + {\sin^4}x = {\cos ^2}3x$$    is

A $${\pi }$$
B $${2\pi }$$
C $${\frac{{5\pi }}{2}}$$
D None of these
Answer :   $${2\pi }$$