Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths

Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The number of solution of $$\tan x + \sec x = 2\cos x{\text{ in}}\left( {0,2\pi } \right){\text{is}}$$

A 2
B 3
C 0
D 1
Answer :   3

52. If $$2\sin x + 1 \geqslant 0$$    and $$x \in \left[ {0,2\pi } \right]$$   then the solution set for $$x$$ is

A $$\left[ {0,\frac{{7\pi }}{6}} \right]$$
B $$\left[ {0,\frac{{7\pi }}{6}} \right] \cup \left[ {\frac{{11\pi }}{6},2\pi } \right]$$
C $$\left[ {\frac{{11\pi }}{6},2\pi } \right]$$
D None of these
Answer :   $$\left[ {0,\frac{{7\pi }}{6}} \right] \cup \left[ {\frac{{11\pi }}{6},2\pi } \right]$$

53. Number of values of $$x$$ which lie in $$\left[ {0,2\pi } \right]$$  and satisfy the equation $$\left( {\cos \frac{x}{4} - 2\sin x} \right)\sin x + \left( {1 + \sin \frac{x}{4} - 2\cos x} \right)\cos x = 0$$

A 1
B 2
C 3
D 4
Answer :   1

54. $${\left| {\cos x} \right|^{{{\sin }^2}x - \frac{3}{2}\sin x + \frac{1}{2}}} = 1,$$     then possible values of $$x$$ :

A $$n\,\pi {\text{ or }}2n\pi + \frac{\pi }{2}$$
B $$n\,\pi {\text{ or }}2n\pi + \frac{\pi }{2}{\text{ or }}n\,\pi + {\left( { - 1} \right)^n}\frac{\pi }{6},n \in I$$
C $$n\,\pi + {\left( { - 1} \right)^n}\frac{\pi }{6},n \in I$$
D None of these
Answer :   $$n\,\pi + {\left( { - 1} \right)^n}\frac{\pi }{6},n \in I$$

55. If $$\frac{1}{6}\sin \theta ,\cos \theta $$   and $$\tan \theta $$  are in G.P. then the general value of $$\theta $$ is

A $$2n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$
B $$2n\pi \pm \frac{\pi }{6},n \in {\Bbb Z}$$
C $$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{3},n \in {\Bbb Z}$$
D $$n\pi + \frac{\pi }{3},n \in {\Bbb Z}$$
Answer :   $$2n\pi \pm \frac{\pi }{3},n \in {\Bbb Z}$$

56. The number of values of $$x \in \left[ {0,4\pi } \right]$$   satisfying $$\left| {\sqrt 3 \cos x - \sin x} \right| \geqslant 2$$

A 2
B 0
C 4
D 8
Answer :   4

57. The most general values of $$\theta $$ satisfying the equation $${\left( {1 + 2\sin \theta } \right)^2} + {\left( {\sqrt 3 \tan \theta - 1} \right)^2} = 0\,$$       are given by

A $$n\pi \pm \frac{\pi }{6}$$
B $$n\pi + {\left( { - 1} \right)^n}\frac{{7\pi }}{6}$$
C $$2n\pi + \frac{7\pi }{6}$$
D $$2n\pi + \frac{11\pi }{6}$$
Answer :   $$2n\pi + \frac{7\pi }{6}$$

58. If $$2{\tan ^2}x - 5\sec x$$    is equal to 1 for exactly 7 distinct values of $$x \in \left[ {0,\frac{{n\pi }}{2}} \right],n \in N,$$     then the greatest value of $$n$$ is

A 6
B 12
C 13
D 15
Answer :   15

59. The number of values of $$x$$ in the interval $$\left[ {0,3\pi } \right]$$  satisfying the equation $$2{\sin ^2}x + 5\sin x - 3 = 0$$     is

A 4
B 6
C 1
D 2
Answer :   4

60. The most general solutions of the equation $$\sec x - 1 = \left( {\sqrt 2 - 1} \right)\tan x$$      are given by

A $$n\pi + \frac{\pi }{8}$$
B $$2n\pi, 2n\pi + \frac{\pi }{4}$$
C $$2n\pi$$
D None of these
Answer :   $$2n\pi, 2n\pi + \frac{\pi }{4}$$