$$2\sin x + 1 \geqslant 0$$
$$ \Rightarrow \,\,\sin x \geqslant - \frac{1}{2}.$$ The value scheme for this is shown below.
From the figure,
$$\eqalign{
& \frac{{11\pi }}{6} \leqslant x \leqslant 2\pi \,\,{\text{or, }}0 \leqslant x \leqslant \frac{{7\pi }}{6}. \cr
& \therefore \,\,x \in \left[ {0,\frac{{7\pi }}{6}} \right] \cup \left[ {\frac{{11\pi }}{6},2\pi } \right]. \cr} $$
53.
Number of values of $$x$$ which lie in $$\left[ {0,2\pi } \right]$$ and satisfy the equation $$\left( {\cos \frac{x}{4} - 2\sin x} \right)\sin x + \left( {1 + \sin \frac{x}{4} - 2\cos x} \right)\cos x = 0$$
A
1
B
2
C
3
D
4
Answer :
1
$$\eqalign{
& \left( {\cos \frac{x}{4} - 2\sin x} \right)\sin x + \left( {1 + \sin \frac{x}{4} - 2\cos x} \right)\cos x = 0 \cr
& \Rightarrow \left( {\sin x\cos \frac{x}{4} + \cos x\sin \frac{x}{4}} \right) + \cos x - 2\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 0 \cr
& \Rightarrow \sin \left( {x + \frac{x}{4}} \right) + \cos x - 2\left( 1 \right) = 0 \cr
& \Rightarrow \sin \frac{{5x}}{4} + \cos x = 2 \cr
& \Rightarrow \sin \frac{{5x}}{4} = \cos x = 1 \cr
& \Rightarrow \sin \frac{{5x}}{4} = 1 \cr
& \Rightarrow \frac{{5x}}{4} = 2n\pi + \frac{\pi }{2} \cr
& \Rightarrow x = \frac{{8n\pi }}{5} + \frac{{2\pi }}{5}\,\,\& \,\,\cos x = 1 \cr
& \Rightarrow x = 2m\pi \cr
& {\text{Thus we have, }}\frac{{8n\pi }}{5} + \frac{{2\pi }}{5} = 2m\pi \cr
& \Rightarrow m = \frac{{4n + 1}}{5} \cr} $$
$$\therefore n \in I,$$ so $$m$$ must be of the form $$m = 5k + 1$$
Hence, the solution of the equation is
$$x = 2\left( {5k + 1} \right)\pi ,k \in I$$
54.
$${\left| {\cos x} \right|^{{{\sin }^2}x - \frac{3}{2}\sin x + \frac{1}{2}}} = 1,$$ then possible values of $$x$$ :
A
$$n\,\pi {\text{ or }}2n\pi + \frac{\pi }{2}$$
B
$$n\,\pi {\text{ or }}2n\pi + \frac{\pi }{2}{\text{ or }}n\,\pi + {\left( { - 1} \right)^n}\frac{\pi }{6},n \in I$$
The equation holds if $$\left| {\cos x} \right| = 1{\text{ i}}{\text{.e}}{\text{., if }}x = n\pi ,n \in I$$
If $$\left| {\cos x} \right| \ne 1$$ then $${\sin ^2}x - \frac{3}{2}\sin x + \frac{1}{2} = 0$$
$$ \Rightarrow \sin x = 1{\text{ or }}\frac{1}{2}$$
$$\sin x \ne 1,$$ as in that case $$\cos x = 0$$
$$\eqalign{
& \therefore \sin x = \frac{1}{2} \cr
& \Rightarrow x = n\,\pi + {\left( { - 1} \right)^n}\frac{\pi }{6} \cr} $$
55.
If $$\frac{1}{6}\sin \theta ,\cos \theta $$ and $$\tan \theta $$ are in G.P. then the general value of $$\theta $$ is
57.
The most general values of $$\theta $$ satisfying the equation $${\left( {1 + 2\sin \theta } \right)^2} + {\left( {\sqrt 3 \tan \theta - 1} \right)^2} = 0\,$$ are given by
A
$$n\pi \pm \frac{\pi }{6}$$
B
$$n\pi + {\left( { - 1} \right)^n}\frac{{7\pi }}{6}$$
58.
If $$2{\tan ^2}x - 5\sec x$$ is equal to 1 for exactly 7 distinct values of $$x \in \left[ {0,\frac{{n\pi }}{2}} \right],n \in N,$$ then the greatest value of $$n$$ is
A
6
B
12
C
13
D
15
Answer :
15
Here, $$\left( {2\sec x + 1} \right)\left( {\sec x - 3} \right) = 0;$$ but $$\left| {\sec x} \right| \geqslant 1.$$ So, $$\sec x = 3,$$ which gives two values of $$\theta $$ in each of $$\left[ {0,2\pi } \right],\left( {2\pi ,4\pi } \right],\left( {4\pi ,6\pi } \right],$$ and one value in $$\left( {6\pi ,6\pi + \frac{{3\pi }}{2}} \right].$$
59.
The number of values of $$x$$ in the interval $$\left[ {0,3\pi } \right]$$ satisfying the equation $$2{\sin ^2}x + 5\sin x - 3 = 0$$ is