Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths
Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
61.
The solution of the equation $${\left( {\sin x + \cos x} \right)^{1 + \sin 2x}} = 2, - \pi \leqslant x \leqslant \pi ,$$ is
A
$$\frac{\pi }{2}$$
B
$$\pi $$
C
$$\frac{\pi }{4}$$
D
None of these
Answer :
$$\frac{\pi }{4}$$
The maximum values of $$\sin x + \cos x$$ and $$1 + \sin 2x$$ are $$\sqrt 2 $$ and $$2$$ respectively. Also, $${\left( {\sqrt 2 } \right)^2} = 2.$$
∴ the equation can hold only when $$\sin x + \cos x = \sqrt 2 \,{\text{and }}1 + \sin 2x = 2.$$
Now, $$\sin x + \cos x = \sqrt 2 $$
$$\eqalign{
& \Rightarrow \,\,\cos \left( {x - \frac{\pi }{4}} \right) = 1 \cr
& \Rightarrow \,\,x = 2n\pi + \frac{\pi }{4}. \cr
& 1 + \sin 2x = 2 \cr
& \Rightarrow \,\,\sin 2x = 1 \cr
& \Rightarrow \,\,x = \frac{{n\pi }}{2} + {\left( { - 1} \right)^n} \cdot \frac{\pi }{4}. \cr} $$
The value in $$\left[ { - \pi ,\pi } \right]$$ satisfying both the equations is $$\frac{\pi }{4}\left( {{\text{when }}n = 0} \right).$$
62.
If $${\sin ^2}\theta - 2\sin \theta - 1 = 0$$ is to be satisfied for exactly 4 distinct values of $$\theta \in \left[ {0,n\pi } \right],n \in N,$$ then the least value of $$n$$ is
A
2
B
6
C
4
D
1
Answer :
4
Here, $$\sin x = 1 \pm \sqrt 2 ;$$ but $$\left| {\sin x} \right| \leqslant 1.$$ So, $$\sin x = 1 - \sqrt 2 ,\,$$ which gives two values of $$\theta $$ in each of $$\left[ {0,2\pi } \right],\left( {2\pi ,4\pi } \right],\left( {4\pi ,6\pi } \right],\,\,{\text{e}}{\text{.t}}{\text{.c}}{\text{.}}$$ Hence, the least value of $$n = 4.$$
63.
If $$r > 0, - \pi \leqslant \theta \leqslant \pi $$ and $$r,\theta $$ satisfy $$r\sin \theta = 3$$ and $$r = 4\left( {1 + \sin \theta } \right)$$ then the number of possible solutions of the pair $$\left( {r,\theta } \right)$$ is
64.
The number of solutions of the equation $$\cos \left( {\pi \sqrt {x - 4} } \right)\cos \left( {\pi \sqrt x } \right) = 1{\text{ is}}$$
A
$$> 2$$
B
$$2$$
C
$$1$$
D
$$0$$
Answer :
$$1$$
Clearly, $$x \geqslant 4$$ (Since $${\sqrt {x - 4} }$$ is real) so that $${\sqrt x }\,$$ is also real.
Again, if $$\cos \left( {\pi \sqrt x } \right) < 1$$ then
$$\cos \left( {\pi \sqrt {x - 4} } \right) > 1$$ and if $$\cos \left( {\pi \sqrt x } \right) > 1,$$ then $$\cos \left( {\pi \sqrt {x - 4} } \right) < 1$$ (since this product $$= 1$$ ).
But both of these are not possible (since $$\cos \theta$$ cannot be greater than 1).
$$\eqalign{
& \therefore \cos \left( {\pi \sqrt {x - 4} } \right) = 1{\text{ and }}\cos \left( {\pi \sqrt x } \right) = 1 \cr
& \therefore x - 4 = 0{\text{ or }}x = 0 \cr} $$
But $$x = 0$$ is not possible,
$$\therefore x = 4$$ is the only solution.
65.
The smallest positive integral value of $$p$$ for which the equation $$\cos\left( {p\sin x} \right) = \sin \left( {p\cos x} \right)$$ in $$x$$ has a solution in $$\left[ {0,2\pi } \right]$$ is
66.
The number of solutions of the pair of equations
$$\eqalign{
& 2\,{\sin ^2}\theta - \cos 2\theta = 0 \cr
& 2\,{\cos ^2}\theta - 3\sin \theta = 0 \cr} $$
in the interval $$\left[ {0,2\pi } \right]$$ is