Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths
Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.
71.
If $$\theta \in \left[ {0,5\pi } \right]$$ and $$r \in R$$ such that $$2\sin \theta = {r^4} - 2{r^2} + 3$$ then the maximum number of values of the pair $$\left( {r,\theta } \right)$$ is
73.
If $$0 \leqslant x \leqslant 3\pi ,0 \leqslant y \leqslant 3\pi $$ and $$\cos x \cdot \sin y = 1$$ then the possible number of values of the ordered pair $$\left( {x,y} \right)$$ is
A
6
B
12
C
8
D
15
Answer :
6
$$\eqalign{
& \max \cos \theta = 1.\,\,{\text{So, }}\cos x \cdot \sin y = 1 \cr
& \Rightarrow \,\,\cos x = 1,\sin y = 1\,\,\,{\text{or, }}\cos x = - 1,\sin y = - 1. \cr
& \cos x = 1,\sin y = 1 \cr
& \Rightarrow \,\,x = 0,2\pi \,\,{\text{and }}y = \frac{\pi }{2},\frac{{5\pi }}{2}\left( {{\text{from the question}}} \right). \cr
& \cos x = - 1,\sin y = - 1 \cr
& \Rightarrow \,\,x = \pi ,3\pi \,\,{\text{and }}y = \frac{{3\pi }}{2}\left( {{\text{from the question}}} \right). \cr} $$
∴ the required number of ordered pair $$ = 2 \times 2 + 2 \times 1 = 6.$$
74.
If sum of all the solutions of the equation $$8\cos x.\left( {\cos \left( {\frac{\pi }{6} + x} \right).\cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) - 1$$ in $$\left[ {0,\pi } \right]{\text{is }}k\pi ,$$ then $$k$$ is equal to:
77.
If the equation $$2\cos x + \cos 2\lambda x = 3$$ has only one solution then $$\lambda $$ is
A
$$1$$
B
a rational number
C
an irrational number
D
None of these
Answer :
an irrational number
As $$\max \cos \theta = 1,2\cos x + \cos 2\lambda x = 3$$ is possible only when $$\cos x = 1\,{\text{and}}\cos 2\lambda x = 1,\,{\text{i}}{\text{.e}}{\text{.,}}\cos x = 1\,{\text{and}}\sin \lambda x = 0.$$
Clearly, if $$\lambda $$ is rational, say $$\frac{p}{q},$$ then $$x = 2q\pi ,q \in {\Bbb Z},$$ satisfies both the equations. Therefore, for exactly one solution, $$x = 0,\,\,\,\lambda $$ should be irrational.
78.
The number of values of $$x$$ in $$\left[ {0,5\pi } \right]$$ satisfying the equation $$3\cos 2x - 10\cos x + 7 = 0$$ is
A
5
B
6
C
8
D
10
Answer :
8
Here, $$6{\cos ^2}x - 10\cos x + 4 = 0\,\,\,\,{\text{or, }}\left( {3\cos x - 2} \right)\left( {\cos x - 1} \right) = 0$$
$$\eqalign{
& \therefore \,\,\cos x = \frac{2}{3},1 \cr
& \Rightarrow \,\,x = 2n\pi \pm {\cos ^{ - 1}}\frac{2}{3},2n\pi . \cr} $$
From $$x = 2n\pi $$ we get one solution each for $$n = 0,1,2.$$
From $$x = 2n\pi \pm {\cos ^{ - 1}}\frac{2}{3}$$ we get the following solutions:
when $$n = 0,$$ one solution; when $$n = 1,$$ two solutions; when $$n = 2,$$ two solutions.
79.
The number of distinct solutions of $$\sec \theta + \tan \theta = \sqrt 3 ,0 \leqslant \theta \leqslant 3\pi ,$$ is
A
3
B
5
C
4
D
None of these
Answer :
None of these
$$\eqalign{
& 1 + \sin \theta = \sqrt 3 \cos \theta \,\,\,{\text{or, }}\sqrt 3 \cos \theta - \sin \theta = 1 \cr
& {\text{or, }}\cos \left( {\theta + \frac{\pi }{6}} \right) = \frac{1}{2}\,\,{\text{or, }}\theta + \frac{\pi }{6} = 2n\pi \pm \frac{\pi }{3}\,\,{\text{or, }}\theta = 2n\pi + \frac{\pi }{6},2n\pi - \frac{\pi }{2}. \cr} $$
∴ when $$\theta = 2n\pi + \frac{\pi }{6},$$ there are solutions for $$n = 0,1$$ and
when $$\theta = 2n\pi - \frac{\pi }{2},$$ for $$n = 1.$$ But this value does not satisfy the given equation.
80.
If $$2\cos x < \sqrt 3 $$ and $$x \in \left[ { - \pi ,\pi } \right]$$ then the solution set for $$x$$ is