Trignometric Equations MCQ Questions & Answers in Trigonometry | Maths

Learn Trignometric Equations MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

81. If $$\left| {\tan x} \right| \leqslant 1$$   and $$x \in \left[ { - \pi ,\pi } \right]$$   then the solution set for $$x$$ is

A $$\left[ { - \pi , - \frac{{3\pi }}{4}} \right] \cup \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right] \cup \left[ {\frac{{3\pi }}{4},\pi } \right]$$
B $$\left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right] \cup \left[ {\frac{{3\pi }}{4},\pi } \right]$$
C $$\left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$$
D None of these
Answer :   $$\left[ { - \pi , - \frac{{3\pi }}{4}} \right] \cup \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right] \cup \left[ {\frac{{3\pi }}{4},\pi } \right]$$

82. The number of solutions of $${16^{{{\sin }^2}x}} + {16^{{{\cos }^2}x}} = 10,0 \leqslant x \leqslant 2\pi ,$$       is

A 8
B 6
C 4
D 2
Answer :   8

83. If $$\cos 7\theta = \cos\theta - \sin4\theta ,$$     then the general value of $$\theta$$ is

A $$\frac{{n\pi }}{6},\frac{{n\pi }}{3} + {\left( { - 1} \right)^n}\frac{\pi }{{18}}$$
B $$\frac{{n\pi }}{3},\frac{{n\pi }}{3} + {\left( { - 1} \right)^n}\frac{\pi }{{18}}$$
C $$\frac{{n\pi }}{4},\frac{{n\pi }}{3} \pm \frac{\pi }{{18}}$$
D $$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + {\left( { - 1} \right)^n}\frac{\pi }{{18}}$$
Answer :   $$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + {\left( { - 1} \right)^n}\frac{\pi }{{18}}$$

84. The equation $$2\,{\cos ^2}\frac{x}{2}{\sin ^2}x = {x^2} + {x^{ - 2}};0 < x \leqslant \frac{\pi }{2}$$        has

A no real solution
B one real solution
C more than one solution
D none of these
Answer :   no real solution

85. Let $$\left[ x \right]$$ = the greatest integer less than or equal to $$x$$ and let $$f\left( x \right) = \sin x + \cos x.$$    Then the most general solutions of $$f\left( x \right) = \left[ {f\left( {\frac{\pi }{{10}}} \right)} \right]$$   are

A $$2n\pi + \frac{\pi }{2},n \in {\Bbb Z}$$
B $$n\pi, n \in {\Bbb Z}$$
C $$2n\pi, n \in {\Bbb Z}$$
D None of these
Answer :   None of these

86. The equation $$2\,{\cos ^2}\left( {\frac{x}{2}} \right) \cdot {\sin ^2}x = {x^2} + \frac{1}{{{x^2}}},0 \leqslant x \leqslant \frac{\pi }{2}{\text{ has}}$$

A one real solution
B no solution
C more than one real solution
D None of these
Answer :   no solution

87. The most general solutions of the equation $${\sec ^2}x = \sqrt 2 \left( {1 - {{\tan }^2}x} \right)$$     are given by

A $$n\pi + \frac{\pi }{8}$$
B $$n\pi \pm \frac{\pi }{4}$$
C $$n\pi \pm \frac{\pi }{8}$$
D None of these
Answer :   $$n\pi \pm \frac{\pi }{8}$$