Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths

Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

91. In a triangle $$PQR,$$  $$\angle R = \frac{\pi }{2}.$$  If $$\tan \left( {\frac{P}{2}} \right)$$  and $$\tan \left( {\frac{Q}{2}} \right)$$  are the roots of the equation $$a{x^2} + bx + c = 0\left( {a \ne 0} \right)$$     then.

A $$a + b = c$$
B $$b + c = a$$
C $$a + c = b$$
D $$b = c$$
Answer :   $$a + b = c$$

92. In a triangle $$ABC, \sin A - \cos B = \cos C,$$      then what is $$B$$ equal to ?

A $$\pi$$
B $$\frac{\pi }{3}$$
C $$\frac{\pi }{2}$$
D $$\frac{\pi }{4}$$
Answer :   $$\frac{\pi }{2}$$

93. If $$ABCD$$   is a cyclic quadrilateral such that $$12\tan A - 5 = 0$$    and $$5\cos B + 3 = 0$$    then the quadratic equation whose roots are $$\cos C,\tan D$$   is

A $$39{x^2} - 16x - 48 = 0$$
B $$39{x^2} + 88x + 48 = 0$$
C $$39{x^2} - 88x + 48 = 0$$
D None of these
Answer :   $$39{x^2} - 16x - 48 = 0$$

94. If $$\left| {\tan A} \right| < 1,$$   and $$\left| A \right|$$ is acute then $$\frac{{\sqrt {1 + \sin 2A} + \sqrt {1 - \sin 2A} }}{{\sqrt {1 + \sin 2A} - \sqrt {1 - \sin 2A} }}$$      is equal to

A $$ \tan A$$
B $$ - \tan A$$
C $$ \cot A$$
D $$ - \cot A$$
Answer :   $$ \cot A$$

95. The number of values of $$x$$ in the interval $$\left[ {0,5\pi } \right]$$  satisfying the equation $$3\,{\sin ^2}x - 7\sin x + 2 = 0$$     is

A 0
B 5
C 6
D 10
Answer :   6

96. The value of the expression $$\sqrt 3 \,{\text{cosec}}\,{\text{2}}{{\text{0}}^ \circ } - \sec {20^ \circ }$$     is equal to

A 2
B $$\frac{{2\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
C 4
D $$\frac{{4\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
Answer :   4

97. Let $$\cos \left( {\alpha + \beta } \right) = \frac{4}{5}\,\,{\text{and sin}}\left( {\alpha - \beta } \right) = \frac{5}{{13}},$$        where $$0 \leqslant \alpha ,\beta \leqslant \frac{\pi }{4}.$$   Then $$\tan2\alpha = $$

A $$\frac{56}{{33}}$$
B $$\frac{19}{{12}}$$
C $$\frac{20}{{7}}$$
D $$\frac{25}{{16}}$$
Answer :   $$\frac{56}{{33}}$$

98. The maximum value of $$1 + \sin \left( {\frac{\pi }{4} + \theta } \right) + 2\cos \left( {\frac{\pi }{4} - \theta } \right)$$       for real values of $$\theta $$ is

A 3
B 5
C 4
D None of these
Answer :   4

99. If $$2\sin \alpha \cdot \cos \beta \cdot \sin \gamma = \sin \beta \cdot \sin \left( {\alpha + \gamma } \right)$$        then $$\tan \alpha ,\tan \beta $$   and $$\tan \gamma $$  are in

A A.P.
B G.P.
C H.P.
D None of these
Answer :   H.P.

100. If $${e^{\sin x}} - {e^{ - \sin x}} - 4 = 0$$     then the number of real values of $$x$$ is

A 0
B 2
C 1
D infinite
Answer :   0