131.
If $$A = \left( {\cos {{12}^ \circ } - \cos {{36}^ \circ }} \right)\left( {\sin {{96}^ \circ } + \sin {{24}^ \circ }} \right)\,\,{\text{and }}B = \left( {\sin {{60}^ \circ } - \sin {{12}^ \circ }} \right)\left( {\cos {{48}^ \circ } - \cos {{72}^ \circ }} \right),$$ then what is $$\frac{A}{B}$$ equal to ?
A
$$ - 1$$
B
$$0$$
C
$$1$$
D
$$2$$
Answer :
$$1$$
View Solution
$$\eqalign{
& {\text{Given, }}A = \left( {\cos {{12}^ \circ } - \cos {{36}^ \circ }} \right)\left( {\sin {{96}^ \circ } + \sin {{24}^ \circ }} \right) \cr
& B = \left( {\sin {{60}^ \circ } - \sin {{12}^ \circ }} \right)\left( {\cos {{48}^ \circ } - \cos {{72}^ \circ }} \right) \cr
& \frac{A}{B} = \frac{{\left[ { - 2\sin {{24}^ \circ }\sin {{12}^ \circ }} \right]\left[ {2\sin {{60}^ \circ }\cos {{36}^ \circ }} \right]}}{{\left[ {2\cos {{36}^ \circ }\sin {{24}^ \circ }} \right]\left[ { - 2\sin {{60}^ \circ }\sin {{12}^ \circ }} \right]}} \cr
& \Rightarrow \frac{A}{B} = 1 \cr} $$
132.
The minimum value of $$\cos 2\theta + \cos \theta $$ for real values of $$\theta $$ is
A
$$ - \frac{9}{8}$$
B
$$0$$
C
$$- 2$$
D
None of these
Answer :
$$ - \frac{9}{8}$$
View Solution
Value $$ = 2{\cos ^2}\theta - 1 + \cos \theta = - 1 + 2\left( {{{\cos }^2}\theta + \frac{1}{2}\cos \theta + \frac{1}{{16}}} \right) - \frac{1}{8}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - \frac{9}{8} + 2{\left( {\cos \theta + \frac{1}{4}} \right)^2} \geqslant - \frac{9}{8}.$$
So, the minimum value $$ = - \frac{9}{8}.$$
133.
If $$0 \leqslant a \leqslant 3,0 \leqslant b \leqslant 3$$ and the equation $${x^2} + 4 + 3\cos \left( {ax + b} \right) = 2x$$ has at least one solution then the value of $$a + b$$ is
A
$$0$$
B
$$\frac{\pi }{2}$$
C
$$\pi $$
D
None of these
Answer :
$$\pi $$
View Solution
$$\eqalign{
& {x^2} - 2x + 4 = - 3\cos \left( {ax + b} \right) \cr
& \Rightarrow \,\,{\left( {x - 1} \right)^2} + 3 = - 3\cos \left( {ax + b} \right). \cr} $$
$${\text{As }} - 1 \leqslant \cos \left( {ax + b} \right) \leqslant 1\,\,{\text{and }}{\left( {x - 1} \right)^2} \geqslant 0,$$ the above is possible only if $$\cos\left( {ax + b} \right) = - 1\,\,{\text{when }}x = 1.\,{\text{So, }}a + b = \pi ,3\pi ,5\pi ,\,{\text{e}}{\text{.t}}{\text{.c}}{\text{., and }}3\pi > 6.$$
134.
The value of $$\cos \frac{\pi }{{11}} + \cos \frac{{3\pi }}{{11}} + \cos \frac{{5\pi }}{{11}} + \cos \frac{{7\pi }}{{11}} + \cos \frac{{9\pi }}{{11}}$$ is
A
$$0$$
B
$$1$$
C
$$\frac{1}{2}$$
D
None of these
Answer :
$$\frac{1}{2}$$
View Solution
Use $$\cos \alpha + \cos \left( {\alpha + \beta } \right) + \cos \left( {\alpha + 2\beta } \right) + ..... + \cos \left( {\alpha + \overline {n - 1} \beta } \right)$$
$$\,\,\,\,\, = \frac{{\sin \frac{{n\beta }}{2}}}{{\sin \frac{\beta }{2}}}\cos \frac{{2\alpha + \left( {n - 1} \right)\beta }}{2}.$$
Here, $$\alpha = \frac{\pi }{{11}},\beta = \frac{{2\pi }}{{11}},n = 5.$$
135.
The value of $$\tan A + \tan \left( {{{60}^ \circ } + A} \right) - \tan \left( {{{60}^ \circ } - A} \right){\text{ is}}$$
A
$$\tan 3A$$
B
$$2\tan 3A$$
C
$$3\tan 3A$$
D
None of these
Answer :
$$3\tan 3A$$
View Solution
The given expression
$$\eqalign{
& = \tan A + \left[ {\frac{{\sqrt 3 + \tan A}}{{1 - \sqrt 3 \tan A}}} \right] - \left[ {\frac{{\sqrt 3 - \tan A}}{{1 + \sqrt 3 \tan A}}} \right] \cr
& = \tan A + \left[ {\frac{{8\tan A}}{{1 - 3\,{{\tan }^2}A}}} \right] = \frac{{9\tan A - 3\,{{\tan }^3}\,3}}{{1 - 3\,{{\tan }^2}A}} \cr
& = 3 \cdot \frac{{\left( {3\tan A - {{\tan }^3}A} \right)}}{{1 - 3\,{{\tan }^2}A}} = 3\tan 3A \cr} $$
136.
What is $$\frac{{\cot {{224}^ \circ } - \cot {{134}^ \circ }}}{{\cot {{226}^ \circ } + \cot {{316}^ \circ }}}$$ equal to ?
A
$$ - \,{\text{cosec }}{{\text{88}}^ \circ }$$
B
$$ - \,{\text{cosec }}{{\text{2}}^ \circ }$$
C
$$ - \,{\text{cosec }}{{\text{44}}^ \circ }$$
D
$$ - \,{\text{cosec }}{{\text{46}}^ \circ }$$
Answer :
$$ - \,{\text{cosec }}{{\text{2}}^ \circ }$$
View Solution
$$\eqalign{
& \frac{{\cot {{224}^ \circ } - \cot {{134}^ \circ }}}{{\cot {{226}^ \circ } + \cot {{316}^ \circ }}} \cr
& = \frac{{\cot \left( {{{180}^ \circ } + {{44}^ \circ }} \right) - \cot \left( {{{180}^ \circ } - {{46}^ \circ }} \right)}}{{\cot \left( {{{180}^ \circ} + {{46}^ \circ }} \right) + \cot {{\left( {{{270}^ \circ } + {{46}^ \circ}} \right)} }}} \cr
& = \frac{{\cot {{44}^ \circ } + \cot {{46}^ \circ }}}{{\cot {{46}^ \circ } - \tan {{46}^ \circ }}} = \frac{{\tan {{46}^ \circ } + \tan {{44}^ \circ }}}{{\tan {{44}^ \circ } - \tan {{46}^ \circ }}} \cr
& = \frac{{\sin \left( {{{46}^ \circ } + {{44}^ \circ }} \right)}}{{\sin \left( {{{44}^ \circ } - {{46}^ \circ }} \right)}} = - \,{\text{cosec }}{{\text{2}}^ \circ } \cr} $$
137.
If $$\frac{{2\sin \alpha }}{{1 + \sin \alpha + \cos \alpha }} = \lambda $$ then $$\frac{{1 + \sin \alpha - \cos \alpha }}{{1 + \sin \alpha }}$$ is equal to
A
$$\frac{1}{\lambda }$$
B
$$\lambda $$
C
$${1 - \lambda }$$
D
$${1 + \lambda }$$
Answer :
$$\lambda $$
View Solution
$$\eqalign{
& \frac{{1 + \sin \alpha - \cos \alpha }}{{1 + \sin \alpha }} = \frac{{{{\left( {1 + \sin \alpha } \right)}^2} - {{\cos }^2}\alpha }}{{\left( {1 + \sin \alpha } \right)\left( {1 + \sin \alpha + \cos \alpha } \right)}} \cr
& \frac{{1 + \sin \alpha - \cos \alpha }}{{1 + \sin \alpha }} = \frac{{2\sin \alpha + 2{{\sin }^2}\alpha }}{{\left( {1 + \sin \alpha } \right)\left( {1 + \sin \alpha + \cos \alpha } \right)}} \cr
& \frac{{1 + \sin \alpha - \cos \alpha }}{{1 + \sin \alpha }} = \frac{{2\sin \alpha }}{{1 + \sin \alpha + \cos \alpha }} = \lambda . \cr} $$
138.
If $$u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } $$ then the difference between the maximum and minimum values of $${u^2}$$ is given by
A
$${\left( {a - b} \right)^2}$$
B
$$2\sqrt {{a^2} + {b^2}} $$
C
$${\left( {a + b} \right)^2}$$
D
$$2\left( {{a^2} + {b^2}} \right)$$
Answer :
$${\left( {a - b} \right)^2}$$
View Solution
$$\eqalign{
& {u^2} = {a^2} + {b^2} + 2\sqrt {\left( {{a^4} + {b^4}} \right){{\cos }^2}\theta {{\sin }^2}\theta + {a^2}{b^2}\left( {{{\cos }^4}\theta + {{\sin }^4}\theta } \right)} \,\,\,......\left( 1 \right) \cr
& {\text{Now}}\,\left( {{a^4} + {b^4}} \right){\cos ^2}\theta {\sin ^2}\theta + {a^2}{b^2}\left( {{{\cos }^4}\theta + {{\sin }^4}\theta } \right) \cr
& = \left( {{a^4} + {b^4}} \right){\cos ^2}\theta {\sin ^2}\theta + {a^2}{b^2}\left( {1 - 2{{\cos }^2}\theta {{\sin }^2}\theta } \right) \cr
& = \left( {{a^4} + {b^4} - 2{a^2}{b^2}} \right){\cos ^2}\theta {\sin ^2}\theta + {a^2}{b^2} \cr
& = {\left( {{a^2} - {b^2}} \right)^2}.\frac{{{{\sin }^2}2\theta }}{4} + {a^2}{b^2}\,\,\,.....\left( 2 \right) \cr
& \because \,\,0 \leqslant {\sin ^2}2\theta \leqslant 1 \cr
& \Rightarrow \,\,0 \leqslant {\left( {{a^2} - {b^2}} \right)^2}\frac{{{{\sin }^2}2\theta }}{4} \leqslant \frac{{{{\left( {{a^2} - {b^2}} \right)}^2}}}{4} \cr
& \Rightarrow \,\,{a^2}{b^2} \leqslant {\left( {{a^2} - {b^2}} \right)^2}\frac{{{{\sin }^2}2\theta }}{4} + {a^2}{b^2} \leqslant {\left( {{a^2} - {b^2}} \right)^2}.\frac{1}{4} + {a^2}{b^2}\,\,\,\,\,.....\left( 3 \right) \cr} $$
∴ from (1), (2) and (3)
Minimum value of $${u^2} = {a^2} + {b^2} + 2\sqrt {{a^2}{b^2}} = {\left( {a + b} \right)^2}$$
Maximum value of $${u^2}$$
$$\eqalign{
& = {a^2} + {b^2} + 2\sqrt {{{\left( {{a^2} - {b^2}} \right)}^2}.\frac{1}{4} + {a^2}{b^2}} \cr
& = {a^2} + {b^2} + \frac{2}{2}\sqrt {{{\left( {{a^2} + {b^2}} \right)}^2}} \cr
& = 2\left( {{a^2} + {b^2}} \right) \cr} $$
∴ Max value - Min value
$$\eqalign{
& = 2\left( {{a^2} + {b^2}} \right) - \left( {a + {b^2}} \right) \cr
& = {\left( {a - b} \right)^2} \cr} $$
139.
If $$x\cos \theta + y\sin \theta = z,$$ then what is the value of $${\left( {x\sin \theta - y\cos \theta } \right)^2}?$$
A
$${x^2} + {y^2} - {z^2}$$
B
$${x^2} - {y^2} - {z^2}$$
C
$${x^2} - {y^2} + {z^2}$$
D
$${x^2} + {y^2} + {z^2}$$
Answer :
$${x^2} + {y^2} - {z^2}$$
View Solution
$$\eqalign{
& {\text{Here, }}z = x\cos \theta + y\sin \theta \cr
& {z^2} = {x^2}{\cos ^2}\theta + {y^2}{\sin ^2}\theta + 2\,xy\sin \theta \cos \theta \cr
& \Rightarrow 2\,xy\sin \theta \cos \theta = {z^2} - {x^2}{\cos ^2}\theta - {y^2}{\sin ^2}\theta \cr
& {\text{Let, }}L = {\left( {x\sin \theta - y\cos \theta } \right)^2} \cr
& \Rightarrow L = {x^2}{\sin ^2}\theta + {y^2}{\cos ^2}\theta - 2\,xy\sin \theta \cos \theta \cr
& \Rightarrow L = {x^2}{\sin ^2}\theta + {y^2}{\cos ^2}\theta - \left[ {{z^2} - {x^2}{{\cos }^2}\theta - {y^2}{{\sin }^2}\theta } \right] \cr
& \Rightarrow L = {x^2}\left[ {{{\sin }^2}\theta + {{\cos }^2}\theta } \right] + {y^2}\left[ {{{\sin }^2}\theta + {{\cos }^2}\theta } \right] - {z^2} \cr
& \Rightarrow L = {x^2} + {y^2} - {z^2} \cr} $$
140.
For any $$\theta \in \left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$$ the expression $$3{\left( {\sin \theta - \cos \theta } \right)^4} + 6{\left( {\sin \theta + \cos \theta } \right)^2} + 4\,{\sin ^6}\theta $$ equals:
A
$$13 - 4\,{\cos ^2}\theta + 6\,{\sin ^2}\theta {\cos ^2}\theta $$
B
$$13 - 4\,{\cos ^6}\theta $$
C
$$13 - 4\,{\cos ^2}\theta + 6\,{\cos ^4}\theta $$
D
$$13 - 4\,{\cos ^4}\theta + 2\,{\sin ^2}\theta {\cos ^2}\theta $$
Answer :
$$13 - 4\,{\cos ^6}\theta $$
View Solution
$$\eqalign{
& 3{\left( {\sin \theta - \cos \theta } \right)^4} + 6{\left( {\sin \theta + \cos \theta } \right)^2} + 4\,{\sin ^6}\theta \cr
& = 3{\left( {1 - 2\sin \theta \cos \theta } \right)^2} + 6\left( {1 + 2\sin \theta \cos \theta } \right) + 4\,{\sin ^6}\theta \cr
& = 3\left( {1 + 4{{\sin }^2}\theta\, {{\cos }^2}\theta - 4\sin \theta \cos \theta } \right) + 6 + 12\sin \theta \cos \theta + 4\,{\sin ^6}\theta \cr
& = 9 + 12\,{\sin ^2}\theta\, {\cos ^2}\theta + 4\,{\sin ^6}\theta \cr
& = 9 + 12\,{\cos ^2}\theta \left( {1 - {{\cos }^2}\theta } \right) + 4{\left( {1 - {{\cos }^2}\theta } \right)^3} \cr
& = 9 + 12\,{\cos ^2}\theta - 12\,{\cos ^4}\theta + 4\left( {1 - {{\cos }^6}\theta - 3\,{{\cos }^2}\theta + 3\,{{\cos }^4}\theta } \right) \cr
& = 9 + 4 - 4\,{\cos ^6}\theta \cr
& = 13 - 4\,{\cos ^6}\theta \cr} $$