Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths

Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

131. If $$A = \left( {\cos {{12}^ \circ } - \cos {{36}^ \circ }} \right)\left( {\sin {{96}^ \circ } + \sin {{24}^ \circ }} \right)\,\,{\text{and }}B = \left( {\sin {{60}^ \circ } - \sin {{12}^ \circ }} \right)\left( {\cos {{48}^ \circ } - \cos {{72}^ \circ }} \right),$$                  then what is $$\frac{A}{B}$$ equal to ?

A $$ - 1$$
B $$0$$
C $$1$$
D $$2$$
Answer :   $$1$$

132. The minimum value of $$\cos 2\theta + \cos \theta $$   for real values of $$\theta $$ is

A $$ - \frac{9}{8}$$
B $$0$$
C $$- 2$$
D None of these
Answer :   $$ - \frac{9}{8}$$

133. If $$0 \leqslant a \leqslant 3,0 \leqslant b \leqslant 3$$     and the equation $${x^2} + 4 + 3\cos \left( {ax + b} \right) = 2x$$      has at least one solution then the value of $$a + b$$  is

A $$0$$
B $$\frac{\pi }{2}$$
C $$\pi $$
D None of these
Answer :   $$\pi $$

134. The value of $$\cos \frac{\pi }{{11}} + \cos \frac{{3\pi }}{{11}} + \cos \frac{{5\pi }}{{11}} + \cos \frac{{7\pi }}{{11}} + \cos \frac{{9\pi }}{{11}}$$         is

A $$0$$
B $$1$$
C $$\frac{1}{2}$$
D None of these
Answer :   $$\frac{1}{2}$$

135. The value of $$\tan A + \tan \left( {{{60}^ \circ } + A} \right) - \tan \left( {{{60}^ \circ } - A} \right){\text{ is}}$$

A $$\tan 3A$$
B $$2\tan 3A$$
C $$3\tan 3A$$
D None of these
Answer :   $$3\tan 3A$$

136. What is $$\frac{{\cot {{224}^ \circ } - \cot {{134}^ \circ }}}{{\cot {{226}^ \circ } + \cot {{316}^ \circ }}}$$     equal to ?

A $$ - \,{\text{cosec }}{{\text{88}}^ \circ }$$
B $$ - \,{\text{cosec }}{{\text{2}}^ \circ }$$
C $$ - \,{\text{cosec }}{{\text{44}}^ \circ }$$
D $$ - \,{\text{cosec }}{{\text{46}}^ \circ }$$
Answer :   $$ - \,{\text{cosec }}{{\text{2}}^ \circ }$$

137. If $$\frac{{2\sin \alpha }}{{1 + \sin \alpha + \cos \alpha }} = \lambda $$     then $$\frac{{1 + \sin \alpha - \cos \alpha }}{{1 + \sin \alpha }}$$    is equal to

A $$\frac{1}{\lambda }$$
B $$\lambda $$
C $${1 - \lambda }$$
D $${1 + \lambda }$$
Answer :   $$\lambda $$

138. If $$u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } $$           then the difference between the maximum and minimum values of $${u^2}$$ is given by

A $${\left( {a - b} \right)^2}$$
B $$2\sqrt {{a^2} + {b^2}} $$
C $${\left( {a + b} \right)^2}$$
D $$2\left( {{a^2} + {b^2}} \right)$$
Answer :   $${\left( {a - b} \right)^2}$$

139. If $$x\cos \theta + y\sin \theta = z,$$     then what is the value of $${\left( {x\sin \theta - y\cos \theta } \right)^2}?$$

A $${x^2} + {y^2} - {z^2}$$
B $${x^2} - {y^2} - {z^2}$$
C $${x^2} - {y^2} + {z^2}$$
D $${x^2} + {y^2} + {z^2}$$
Answer :   $${x^2} + {y^2} - {z^2}$$

140. For any $$\theta \in \left( {\frac{\pi }{4},\frac{\pi }{2}} \right)$$   the expression $$3{\left( {\sin \theta - \cos \theta } \right)^4} + 6{\left( {\sin \theta + \cos \theta } \right)^2} + 4\,{\sin ^6}\theta $$         equals:

A $$13 - 4\,{\cos ^2}\theta + 6\,{\sin ^2}\theta {\cos ^2}\theta $$
B $$13 - 4\,{\cos ^6}\theta $$
C $$13 - 4\,{\cos ^2}\theta + 6\,{\cos ^4}\theta $$
D $$13 - 4\,{\cos ^4}\theta + 2\,{\sin ^2}\theta {\cos ^2}\theta $$
Answer :   $$13 - 4\,{\cos ^6}\theta $$