141.
If $$\left( {\sec \,\alpha + \tan \,\alpha } \right)\left( {\sec \,\beta + \tan \,\beta } \right)\left( {\sec \,\gamma + \tan \,\gamma } \right) = \,\tan \,\alpha \,\tan \,\beta \,\tan \,\gamma ,$$ then expression $$\left( {\sec \,\alpha - \tan \,\alpha } \right)\left( {\sec \,\beta - \tan \,\beta } \right)\left( {\sec \,\gamma - \tan \,\gamma } \right)$$ is equal to
A
$$\cot \alpha \cot \beta \cot \gamma $$
B
$$\tan \alpha \tan \beta \tan \gamma $$
C
$$\cot \alpha + \cot \beta + \cot \gamma $$
D
$$\tan \alpha + \tan \beta + \tan \gamma $$
Answer :
$$\cot \alpha \cot \beta \cot \gamma $$
View Solution
$$\eqalign{
& \left( {\sec \,\alpha + \tan \,\alpha } \right)\left( {\sec \,\beta + \tan \,\beta } \right)\left( {\sec \,\gamma + \tan \,\gamma } \right) = \,\tan \,\alpha \,\tan \,\beta \,\tan \,\gamma \cr
& \Rightarrow \,\left( {{{\sec }^2}\,\alpha - {{\tan }^2}\alpha } \right)\left( {{{\sec }^2}\beta - {{\tan }^2}\beta } \right)\left( {{{\sec }^2}\gamma - {{\tan }^2}\gamma } \right) \cr
& = \tan \alpha \,\tan\beta \,\tan \gamma \left( {\sec \alpha - \tan \alpha } \right)\left( {\sec \beta - \tan\beta } \right)\left( {\sec \gamma - \tan \gamma } \right) \cr
& \Rightarrow \,\left( {\sec \alpha - \tan \alpha } \right)\left( {\sec \beta - \tan\beta } \right)\left( {\sec \gamma - \tan \gamma } \right) \cr
& = \cot \alpha \cot \beta \,\cot \gamma \cr} $$
142.
Find the value of $$\cot {5^ \circ }\,\cot {10^ \circ }.....\cot {85^ \circ }$$
A
$$1$$
B
$$ - 1$$
C
$$2$$
D
$$ - 2$$
Answer :
$$1$$
View Solution
$$\eqalign{
& \cot{5^ \circ }\,\cot {10^ \circ }\,.....\cot {85^ \circ } \cr
& = \cot {5^ \circ }\,\cot {10^ \circ }.....\cot \left( {{{90}^ \circ } - {{10}^ \circ }} \right)\cot \left( {{{90}^ \circ } - {5^ \circ }} \right) \cr
& = \cot {5^ \circ }\,\cot {10^ \circ }.....\tan {10^ \circ }\tan {5^ \circ } \cr
& = \left( {\tan {5^ \circ }\,\cot {5^ \circ }} \right)\left( {\tan {{10}^ \circ }\,\cot {{10}^ \circ }} \right)..... \cr
& = \left( 1 \right)\left( 1 \right)\left( 1 \right)..... = 1 \cr} $$
143.
The value of $$\sqrt 3 \,{\text{cosec}}\,{20^ \circ } - \sec {20^ \circ }$$ is equal to
A
$$2$$
B
$$4$$
C
$$2 \cdot \frac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
D
$$4 \cdot \frac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
Answer :
$$4$$
View Solution
Value $$ = \frac{{\sqrt 3 \,{\text{cos}}\,{{20}^ \circ } - \sin {{20}^ \circ }}}{{\sin {{20}^ \circ } \cdot \cos {{20}^ \circ }}} = \frac{{4\left( {\frac{{\sqrt 3 }}{2}\cos {{20}^ \circ } - \frac{1}{2}\sin {{20}^ \circ }} \right)}}{{\sin {{40}^ \circ }}}$$
$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{4\sin \left( {{{60}^ \circ } - {{20}^ \circ }} \right)}}{{\sin {{40}^ \circ }}} = 4.$$
144.
Given both $$\theta $$ and $$\phi $$ are acute angles and $$\sin \theta = \frac{1}{2},\,\cos \phi = \frac{1}{3},$$ then the value of $$\theta + \phi $$ belongs to
A
$$\left( {\frac{\pi }{3},\frac{\pi }{2}} \right]$$
B
$${\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)}$$
C
$$\left( {\frac{{2\pi }}{3},\frac{{5\pi }}{6}} \right]$$
D
$$\left( {\frac{{5\pi }}{6},\pi } \right]$$
Answer :
$${\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)}$$
View Solution
Given that $$\sin \theta = \frac{1}{2}\,{\text{and}}\,\cos \phi = \frac{1}{3}\,{\text{and }}\theta \,{\text{and }}\phi $$ both are acute angles
$$\eqalign{
& \therefore \,\,\theta = \frac{\pi }{6}\,{\text{and 0 < }}\frac{1}{3} < \frac{1}{2} \cr
& {\text{or }}\cos \frac{\pi }{2} < \cos \phi < \cos \frac{\pi }{3}\,{\text{or }}\frac{\pi }{3} < \phi < \frac{\pi }{2} \cr
& \therefore \,\,\frac{\pi }{3} + \frac{\pi }{6} < \theta + \phi < \frac{\pi }{2} + \frac{\pi }{6}{\text{ or }}\frac{\pi }{2} < \theta + \phi < \frac{{2\pi }}{3} \cr
& \Rightarrow \,\,\theta + \phi \in \left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right) \cr} $$
145.
Let $$\alpha ,\beta $$ be such that $$\pi < \alpha - \beta < 3\pi .$$ If $$\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$$ and $$\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$$ then the value of $$\cos \frac{{\alpha - \beta }}{2}$$
A
$$\frac{{ - 6}}{{65}}$$
B
$$\frac{3}{{\sqrt {130} }}$$
C
$$\frac{{6}}{{65}}$$
D
$$ - \frac{3}{{\sqrt {130} }}$$
Answer :
$$ - \frac{3}{{\sqrt {130} }}$$
View Solution
$$\eqalign{
& \pi < \alpha - \beta < 3\pi \cr
& \Rightarrow \,\,\frac{\pi }{2} < \frac{{\alpha - \beta }}{2} < \frac{{3\pi }}{2} \cr
& \Rightarrow \,\,\cos \frac{{\alpha - \beta }}{2} < 0 \cr
& \sin \alpha + \sin \beta = - \frac{{21}}{{65}} \cr
& \Rightarrow \,\,2\sin \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2} = - \frac{{21}}{{65}}\,\,\,\,\,.....\left( 1 \right) \cr
& \cos \alpha + \cos \beta = - \frac{{27}}{{65}} \cr
& \Rightarrow \,\,2\cos \frac{{\alpha + \beta }}{2}\cos \frac{{\alpha - \beta }}{2} = - \frac{{27}}{{65}}\,\,\,\,.....\left( 2 \right) \cr} $$
Square and add (1) and (2)
$$\eqalign{
& 4{\cos ^2}\frac{{\alpha - \beta }}{2} \cr
& = \frac{{{{\left( {21} \right)}^2} + {{\left( {27} \right)}^2}}}{{{{\left( {65} \right)}^2}}} \cr
& = \frac{{1170}}{{65 \times 65}} \cr
& \therefore \,\,{\cos ^2}\frac{{\alpha - \beta }}{2} \cr
& = \frac{9}{{130}} \cr
& \Rightarrow \,\,\cos \frac{{\alpha - \beta }}{2} \cr
& = - \frac{3}{{\sqrt {130} }} \cr} $$