Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths

Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

141. If $$\left( {\sec \,\alpha + \tan \,\alpha } \right)\left( {\sec \,\beta + \tan \,\beta } \right)\left( {\sec \,\gamma + \tan \,\gamma } \right) = \,\tan \,\alpha \,\tan \,\beta \,\tan \,\gamma ,$$              then expression $$\left( {\sec \,\alpha - \tan \,\alpha } \right)\left( {\sec \,\beta - \tan \,\beta } \right)\left( {\sec \,\gamma - \tan \,\gamma } \right)$$          is equal to

A $$\cot \alpha \cot \beta \cot \gamma $$
B $$\tan \alpha \tan \beta \tan \gamma $$
C $$\cot \alpha + \cot \beta + \cot \gamma $$
D $$\tan \alpha + \tan \beta + \tan \gamma $$
Answer :   $$\cot \alpha \cot \beta \cot \gamma $$

142. Find the value of $$\cot {5^ \circ }\,\cot {10^ \circ }.....\cot {85^ \circ }$$

A $$1$$
B $$ - 1$$
C $$2$$
D $$ - 2$$
Answer :   $$1$$

143. The value of $$\sqrt 3 \,{\text{cosec}}\,{20^ \circ } - \sec {20^ \circ }$$     is equal to

A $$2$$
B $$4$$
C $$2 \cdot \frac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
D $$4 \cdot \frac{{\sin {{20}^ \circ }}}{{\sin {{40}^ \circ }}}$$
Answer :   $$4$$

144. Given both $$\theta $$ and $$\phi $$ are acute angles and $$\sin \theta = \frac{1}{2},\,\cos \phi = \frac{1}{3},$$     then the value of $$\theta + \phi $$  belongs to

A $$\left( {\frac{\pi }{3},\frac{\pi }{2}} \right]$$
B $${\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)}$$
C $$\left( {\frac{{2\pi }}{3},\frac{{5\pi }}{6}} \right]$$
D $$\left( {\frac{{5\pi }}{6},\pi } \right]$$
Answer :   $${\left( {\frac{\pi }{2},\frac{{2\pi }}{3}} \right)}$$

145. Let $$\alpha ,\beta $$  be such that $$\pi < \alpha - \beta < 3\pi .$$    If $$\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$$    and $$\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$$     then the value of $$\cos \frac{{\alpha - \beta }}{2}$$

A $$\frac{{ - 6}}{{65}}$$
B $$\frac{3}{{\sqrt {130} }}$$
C $$\frac{{6}}{{65}}$$
D $$ - \frac{3}{{\sqrt {130} }}$$
Answer :   $$ - \frac{3}{{\sqrt {130} }}$$