Trigonometric Ratio and Identities MCQ Questions & Answers in Trigonometry | Maths

Learn Trigonometric Ratio and Identities MCQ questions & answers in Trigonometry are available for students perparing for IIT-JEE and engineering Enternace exam.

21. On simplifying $$\frac{{{{\sin }^3}A + \sin 3A}}{{\sin A}} + \frac{{{{\cos }^3}A - \cos 3A}}{{\cos A}},$$        we get

A $${\sin 3A}$$
B $${\cos 3A}$$
C $${\sin A} + {\cos A}$$
D $$3$$
Answer :   $$3$$

22. If $$0 < x < \pi $$   and $$\cos x + \sin x = \frac{1}{2},$$    then $$\tan x$$  is

A $$\frac{{\left( {1 - \sqrt 7 } \right)}}{4}$$
B $$\frac{{\left( {4 - \sqrt 7 } \right)}}{3}$$
C $$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$
D $$\frac{{\left( {1 + \sqrt 7 } \right)}}{4}$$
Answer :   $$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$

23. The values of $$\theta \in \left( {0,2\pi } \right)$$   for which $$2{\sin ^2}\theta - 5\sin \theta + 2 > 0,$$     are

A $$\left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$
B $$\left( {\frac{\pi }{8},\frac{{5\pi }}{6}} \right)$$
C $$\left( {0,\frac{\pi }{8}} \right) \cup \left( {\frac{\pi }{6},\frac{{5\pi }}{6}} \right)$$
D $$\left( {\frac{{41\pi }}{48},\pi } \right)$$
Answer :   $$\left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$

24. Let $$\theta \in \left( {0,\frac{\pi }{4}} \right)$$   and $${t_1} = {\left( {\tan \theta } \right)^{\tan \theta }},{t_2} = {\left( {\tan \theta } \right)^{\cot \theta }},$$       $${t_3} = {\left( {\cot \theta } \right)^{\tan \theta }}\,{\text{and }}{t_4} = {\left( {\cot \theta } \right)^{\cot \theta }},$$       then

A $${t_1} > {t_2} > {t_3} > {t_4}$$
B $${t_4} > {t_3} > {t_1} > {t_2}$$
C $${t_3} > {t_1} > {t_2} > {t_4}$$
D $${t_2} > {t_3} > {t_1} > {t_4}$$
Answer :   $${t_4} > {t_3} > {t_1} > {t_2}$$

25. If $$\tan \frac{\alpha }{2}$$  and $$\tan \frac{\beta }{2}$$  are the roots of the equation $$8{x^2} - 26x + 15 = 0\,$$    then $$\cos \left( {\alpha + \beta } \right)$$   is equal to

A $$ - \frac{{627}}{{725}}$$
B $$ \frac{{627}}{{725}}$$
C $$- 1$$
D None of these
Answer :   $$ - \frac{{627}}{{725}}$$

26. Domain of the function $$f\left( x \right) = \sqrt {\frac{1}{{\sin x}} - 1} ,{\text{ is}}$$

A $$\mathop \cup \limits_{n \in I} \left( {2n\pi ,2n\pi + \frac{\pi }{2}} \right)$$
B $$\mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right]$$
C $$\mathop \cup \limits_{n \in I} \left[ {\left( {2n - 1} \right)\pi , 2n\pi} \right ]$$
D None of these
Answer :   $$\mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right]$$

27. The value of $${\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + \sin {20^ \circ } + ..... + {\sin ^2}{90^ \circ }{\text{ is}}$$

A $$7$$
B $$8$$
C $$9$$
D $$\frac{{19}}{2}$$
Answer :   $$\frac{{19}}{2}$$

28. If $$\sec \alpha $$  and $${\text{cosec}}\,\alpha $$  are the roots of $${x^2} - px + q = 0$$    then

A $${p^2} = q\left( {q - 2} \right)$$
B $${p^2} = q\left( {q + 2} \right)$$
C $${p^2} + {q^2} = 2q$$
D None of these
Answer :   $${p^2} = q\left( {q + 2} \right)$$

29. If $$\sin \theta = \frac{{12}}{{13}}\left( {0 < \theta < \frac{\pi }{2}} \right){\text{and}}\cos \phi = \frac{3}{5},\left( {\pi < \phi < \frac{{3\pi }}{2}} \right)$$           Then $$\sin \left( {\theta + \phi } \right)$$   will be

A $$\frac{{ - 56}}{{61}}$$
B $$\frac{{ - 56}}{{65}}$$
C $$\frac{{ 1}}{{65}}$$
D $$ - 56$$
Answer :   $$\frac{{ - 56}}{{65}}$$

30. Let $$f\left( \theta \right) = \sin \theta \left( {\sin \theta + \sin 3\theta } \right).$$      Then $$f\left( \theta \right)$$  is

A $$ \geqslant 0\,\,{\text{only when }}\theta \geqslant {\text{0}}$$
B $$ \leqslant 0\,{\text{for all real}}\,\theta $$
C $$ \geqslant 0\,{\text{for all real}}\,\theta $$
D $$ \leqslant 0\,\,{\text{only when }}\theta \leqslant {\text{0}}$$
Answer :   $$ \geqslant 0\,{\text{for all real}}\,\theta $$