21.
On simplifying $$\frac{{{{\sin }^3}A + \sin 3A}}{{\sin A}} + \frac{{{{\cos }^3}A - \cos 3A}}{{\cos A}},$$ we get
A
$${\sin 3A}$$
B
$${\cos 3A}$$
C
$${\sin A} + {\cos A}$$
D
$$3$$
Answer :
$$3$$
View Solution
$$\eqalign{
& \frac{{{{\sin }^3}A + \sin 3A}}{{\sin A}} + \frac{{{{\cos }^3}A - \cos 3A}}{{\cos A}} \cr
& \Rightarrow \frac{{{{\sin }^3}A + 3\,\sin A - 4\,{{\sin }^3}A}}{{\sin A}} + \frac{{{{\cos }^3}A - \left[ {4\,{{\cos }^3}A - 3\cos A} \right]}}{{\cos A}} \cr
& \Rightarrow \frac{{3\sin A - 3\,{{\sin }^3}A}}{{\sin A}} + \frac{{\left( { - 3\,{{\cos }^3}A + 3\cos A} \right)}}{{\cos A}} \cr
& = 3 - 3\,{\sin ^2}A - 3\,{\cos ^2}A + 3 \cr
& = 6 - 3\left( {{{\cos }^2}A + {{\sin }^2}A} \right) \cr
& = 6 - 3\left( 1 \right) \cr
& = 3 \cr} $$
22.
If $$0 < x < \pi $$ and $$\cos x + \sin x = \frac{1}{2},$$ then $$\tan x$$ is
A
$$\frac{{\left( {1 - \sqrt 7 } \right)}}{4}$$
B
$$\frac{{\left( {4 - \sqrt 7 } \right)}}{3}$$
C
$$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$
D
$$\frac{{\left( {1 + \sqrt 7 } \right)}}{4}$$
Answer :
$$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$
View Solution
Given, $$\cos x + \sin x = \frac{1}{2}$$
$$ \Rightarrow 1 + \sin 2x = \frac{1}{4}$$
$$ \Rightarrow \sin 2x = - \frac{3}{4},$$ so $$x$$ is obtuse and $$\frac{{2\tan x}}{{1 + {{\tan }^2}x}} = - \frac{3}{4}$$
$$\eqalign{
& \Rightarrow 3\tan ^2 x + 8\tan x + 3 = 0 \cr
& \therefore \tan x = \frac{{ - 8 \pm \sqrt {64 - 36} }}{6} = - \frac{{ - 4 \pm \sqrt 7 }}{3} \cr
& {\text{as }}\tan x < 0 \cr
& \therefore \tan x = \frac{{ - 4 - \sqrt 7 }}{3} \cr} $$
23.
The values of $$\theta \in \left( {0,2\pi } \right)$$ for which $$2{\sin ^2}\theta - 5\sin \theta + 2 > 0,$$ are
A
$$\left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$
B
$$\left( {\frac{\pi }{8},\frac{{5\pi }}{6}} \right)$$
C
$$\left( {0,\frac{\pi }{8}} \right) \cup \left( {\frac{\pi }{6},\frac{{5\pi }}{6}} \right)$$
D
$$\left( {\frac{{41\pi }}{48},\pi } \right)$$
Answer :
$$\left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$
View Solution
$$\eqalign{
& 2{\sin ^2}\theta - 5\sin \theta + 2 > 0 \cr
& \Rightarrow \,\,\left( {\sin \theta - 2} \right)\left( {2\sin \theta - 1} \right) > 0 \cr
& \Rightarrow \,\,\sin \theta < \frac{1}{2}\,\,\,\,\,\,\left[ {\because \,\, - 1 \leqslant \sin \theta \leqslant 1} \right] \cr} $$
From graph, we get $$x \in \left( {0,\frac{\pi }{6}} \right) \cup \left( {\frac{{5\pi }}{6},2\pi } \right)$$
24.
Let $$\theta \in \left( {0,\frac{\pi }{4}} \right)$$ and $${t_1} = {\left( {\tan \theta } \right)^{\tan \theta }},{t_2} = {\left( {\tan \theta } \right)^{\cot \theta }},$$ $${t_3} = {\left( {\cot \theta } \right)^{\tan \theta }}\,{\text{and }}{t_4} = {\left( {\cot \theta } \right)^{\cot \theta }},$$ then
A
$${t_1} > {t_2} > {t_3} > {t_4}$$
B
$${t_4} > {t_3} > {t_1} > {t_2}$$
C
$${t_3} > {t_1} > {t_2} > {t_4}$$
D
$${t_2} > {t_3} > {t_1} > {t_4}$$
Answer :
$${t_4} > {t_3} > {t_1} > {t_2}$$
View Solution
$$\eqalign{
& \because \,\,\theta \in \left( {0,\frac{\pi }{4}} \right) \cr
& \Rightarrow \,\,\tan \theta < 1\,{\text{and }}\cot \theta > 1 \cr
& {\text{Let tan}}\theta = 1 - x\,{\text{and cot}}\theta = 1 + y \cr} $$
Where $$x, y > 0$$ and are very small, then
$$\eqalign{
& \therefore \,\,{t_1} = {\left( {1 - x} \right)^{1 - x}},{t_2} = {\left( {1 - x} \right)^{1 + y}}, \cr
& {t_3} = {\left( {1 + y} \right)^{1 - x}},{t_4} = {\left( {1 + y} \right)^{1 + y}} \cr} $$
$${\text{Clearly, }}{t_4} > {t_3}\,{\text{and }}{t_1} > {t_2}\,{\text{also, }}{t_3} > {t_1}$$ NOTE THIS STEP
$${\text{Thus}}\,{\text{ }}{t_4} > {t_3} > {t_1} > {t_2}.$$
25.
If $$\tan \frac{\alpha }{2}$$ and $$\tan \frac{\beta }{2}$$ are the roots of the equation $$8{x^2} - 26x + 15 = 0\,$$ then $$\cos \left( {\alpha + \beta } \right)$$ is equal to
A
$$ - \frac{{627}}{{725}}$$
B
$$ \frac{{627}}{{725}}$$
C
$$- 1$$
D
None of these
Answer :
$$ - \frac{{627}}{{725}}$$
View Solution
Use $$\cos \left( {\alpha + \beta } \right) = \frac{{1 - {{\tan }^2}\frac{{\alpha + \beta }}{2}}}{{1 + {{\tan }^2}\frac{{\alpha + \beta }}{2}}},\tan \frac{{\alpha + \beta }}{2} = \frac{{\tan \frac{\alpha }{2} + \tan \frac{\beta }{2}}}{{1 - \tan \frac{\alpha }{2} \cdot \tan \frac{\beta }{2}}}$$
and $$\tan \frac{\alpha }{2} + \tan \frac{\beta }{2} = \frac{{13}}{4},\tan \frac{\alpha }{2}\tan \frac{\beta }{2} = \frac{{15}}{8}.$$
26.
Domain of the function $$f\left( x \right) = \sqrt {\frac{1}{{\sin x}} - 1} ,{\text{ is}}$$
A
$$\mathop \cup \limits_{n \in I} \left( {2n\pi ,2n\pi + \frac{\pi }{2}} \right)$$
B
$$\mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right]$$
C
$$\mathop \cup \limits_{n \in I} \left[ {\left( {2n - 1} \right)\pi , 2n\pi} \right ]$$
D
None of these
Answer :
$$\mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right]$$
View Solution
$$\eqalign{
& \frac{1}{{\sin x}} - 1 \geqslant 0;\,\,\frac{{1 - \sin x}}{{\sin x}} \geqslant 0 \cr
& \frac{{\sin x - 1}}{{\sin x}} \leqslant 0 \cr
& \Rightarrow 0 < \sin x \leqslant 1 \cr
& \Rightarrow x \in \mathop \cup \limits_{n \in I} \left[ {2n\pi ,\left( {2n + 1} \right)\pi } \right] \cr} $$
27.
The value of $${\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + \sin {20^ \circ } + ..... + {\sin ^2}{90^ \circ }{\text{ is}}$$
A
$$7$$
B
$$8$$
C
$$9$$
D
$$\frac{{19}}{2}$$
Answer :
$$\frac{{19}}{2}$$
View Solution
$$\eqalign{
& {\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + ..... + ..... + {\sin ^2}{75^ \circ } + {\sin ^2}{80^ \circ } + {\sin ^2}{85^ \circ } + {\sin ^2}{90^ \circ } \cr
& \Rightarrow {\sin ^2}{5^ \circ } + {\sin ^2}{10^ \circ } + {\sin ^2}{15^ \circ } + ..... +{\sin ^2}\left( {{{90}^ \circ} - {{15}^ \circ }} \right) + {\sin ^2}\left( {{{90}^ \circ} - {{10}^ \circ}} \right) + {\sin ^2}\left( {{{90}^ \circ} - {{5}^ \circ}} \right) + 1 \cr
& \Rightarrow {\sin ^2}{{5}^ \circ} + {\sin ^2}{{10}^ \circ} + {\sin ^2}{15^ \circ } + ..... + {\cos ^2}{15^ \circ } + {\cos ^2}{10^ \circ } + {\cos ^2}{5^ \circ } + 1 \cr
& \Rightarrow \left( {1 + 1 + 1 + .....8\,{\text{times}}} \right) + \sin {45^ \circ } + 1 \cr
& \Rightarrow 8 + \frac{1}{2} + 1 = \frac{{19}}{2} \cr} $$
28.
If $$\sec \alpha $$ and $${\text{cosec}}\,\alpha $$ are the roots of $${x^2} - px + q = 0$$ then
A
$${p^2} = q\left( {q - 2} \right)$$
B
$${p^2} = q\left( {q + 2} \right)$$
C
$${p^2} + {q^2} = 2q$$
D
None of these
Answer :
$${p^2} = q\left( {q + 2} \right)$$
View Solution
$$\eqalign{
& \sec \alpha + {\text{cosec}}\,\alpha = p\,\,{\text{and}}\sec \alpha \cdot {\text{cosec}}\,\alpha = q. \cr
& \therefore \,\,\sin\alpha + \cos\alpha = p\sin \alpha \cdot \cos \alpha \,\,{\text{and }}\sin \alpha \cdot \cos \alpha = \frac{1}{q}. \cr
& \therefore \,\, \sin \alpha + \cos \alpha = \frac{p}{q} \cr
& \therefore \,\,\frac{{{p^2}}}{{{q^2}}} = 1 + 2\sin \alpha \cdot \cos \alpha = 1 + \frac{2}{q}. \cr} $$
29.
If $$\sin \theta = \frac{{12}}{{13}}\left( {0 < \theta < \frac{\pi }{2}} \right){\text{and}}\cos \phi = \frac{3}{5},\left( {\pi < \phi < \frac{{3\pi }}{2}} \right)$$ Then $$\sin \left( {\theta + \phi } \right)$$ will be
A
$$\frac{{ - 56}}{{61}}$$
B
$$\frac{{ - 56}}{{65}}$$
C
$$\frac{{ 1}}{{65}}$$
D
$$ - 56$$
Answer :
$$\frac{{ - 56}}{{65}}$$
View Solution
$$\eqalign{
& {\text{We have, }}\sin \theta = \frac{{12}}{{13}} \cr
& \cos \theta = \sqrt {1 - {{\sin }^2}\theta } = \sqrt {1 - {{\left( {\frac{{12}}{{13}}} \right)}^2}} = \frac{5}{{13}} \cr
& {\text{and }}\cos \phi = \frac{{ - 3}}{5}, \sin\phi = \sqrt {1 - \frac{9}{{25}}} = \frac{{ - 4}}{5},\left[ {\because \pi < \phi < \frac{{3\pi }}{2}} \right] \cr
& {\text{Now, }}\sin \left( {\theta + \phi } \right) = \sin \theta \cdot \cos \phi + \cos \theta \cdot \sin \phi \cr
& = \left( {\frac{{12}}{{13}}} \right)\left( {\frac{{ - 3}}{5}} \right) + \left( {\frac{5}{{13}}} \right)\left( {\frac{{ - 4}}{5}} \right) = \frac{{ - 36}}{{65}} - \frac{{20}}{{65}} = \frac{{ - 56}}{{65}} \cr} $$
30.
Let $$f\left( \theta \right) = \sin \theta \left( {\sin \theta + \sin 3\theta } \right).$$ Then $$f\left( \theta \right)$$ is
A
$$ \geqslant 0\,\,{\text{only when }}\theta \geqslant {\text{0}}$$
B
$$ \leqslant 0\,{\text{for all real}}\,\theta $$
C
$$ \geqslant 0\,{\text{for all real}}\,\theta $$
D
$$ \leqslant 0\,\,{\text{only when }}\theta \leqslant {\text{0}}$$
Answer :
$$ \geqslant 0\,{\text{for all real}}\,\theta $$
View Solution
$$\eqalign{
& f\left( \theta \right) = \sin \theta \left( {\sin \theta + \sin 3\theta } \right) \cr
& = \left( {\sin \theta + 3\sin \theta - 4{{\sin }^3}\theta } \right).\sin \theta \cr
& = \left( {4\sin \theta - 4{{\sin }^3}\theta } \right)\sin \theta = {\sin ^2}\theta \left( {4 - 4{{\sin }^2}\theta } \right) \cr
& = 4{\sin ^2}\theta \left( {1 - {{\sin }^2}\theta } \right) \cr
& = 4{\sin ^2}\theta {\cos ^2}\theta \cr
& = {\left( {2\sin \theta \cos \theta } \right)^2} \cr
& = {\left( {\sin 2\theta } \right)^2} \geqslant 0 \cr} $$
which is true for all $$\theta .$$