41.
Which of the following functions has period $$2\pi \,?$$
A
$$y = \sin \left( {2\pi \,t + \frac{\pi }{3}} \right) + 2\sin \left( {3\pi \,t + \frac{\pi }{4}} \right) + 3\sin 5\pi \,t$$
B
$$y = \sin \frac{\pi }{3}t + \sin \frac{\pi }{4}t$$
C
$$y = \sin t + \cos 2t$$
D
None of these
Answer :
$$y = \sin t + \cos 2t$$
View Solution
We have two functions $$f\left( x \right)$$ and $$g\left( x \right)$$ have periods $$T_1$$ and $$T_2$$ respectively, then each of $$f\left( x \right) \pm g\left( x \right);f\left( x \right) \cdot g\left( x \right);\frac{{f\left( x \right)}}{{g\left( x \right)}},$$ provided $$g\left( x \right) = 0$$ has period equal to the LCM of $$T_1$$ and $$T_2 .$$
Now, we know that $$\sin x$$ or $$\cos x$$ has period $$2\pi .$$
Hence, period of $$y = \sin t + \cos 2t{\text{ is }}2\pi .$$
42.
The value of $$\sin \frac{\pi }{n} + \sin \frac{{3\pi }}{n} + \sin \frac{{5\pi }}{n} + .....\,{\text{to }}n$$ terms is equal to
A
$$1$$
B
$$0$$
C
$$\frac{n}{2}$$
D
None of these
Answer :
$$0$$
View Solution
Use $$\sin \alpha + sin\left( {\alpha + \beta } \right) + \sin \left( {\alpha + 2\beta } \right) + ..... + \sin \left( {\alpha + \overline {n - 1} \beta } \right)$$
$$\eqalign{
& \,\,\, = \frac{{\sin \frac{{n\beta }}{2}}}{{\sin \frac{\beta }{2}}}\sin \frac{{2\alpha + \left( {n - 1} \right)\beta }}{2}. \cr
& {\text{Here, }}\alpha = \frac{\pi }{n},\beta = \frac{{2\pi }}{n}. \cr} $$
43.
For all real values of $$\theta ,\cot \theta - 2\cot 2\theta $$ is equal to
A
$$\tan 2\theta $$
B
$$\tan \theta $$
C
$$ - \cot 3\theta $$
D
None of these
Answer :
$$\tan \theta $$
View Solution
$$\eqalign{
& \cot \,\theta - 2\,\cot \,2\theta \cr
& = \frac{{\cos \,\theta }}{{\sin \,\theta }} - \frac{{2\,\cos \,2\theta }}{{\sin \,2\theta }} \cr
& = \frac{{\sin \,\theta .\cos \,\theta - 2\,\cos \,2\theta .\sin \,\theta }}{{\sin \,\theta .\sin \,2\theta }} \cr
& = \frac{{\sin \left( {2\theta - \theta } \right) - \cos \,2\theta .\sin \,\theta }}{{\sin \,\theta .\sin \,2\theta }} \cr
& = \frac{{\sin \,\theta \left\{ {1 - 1 + 2\,{{\sin }^2}\theta } \right\}}}{{\sin \,\theta .2\,\sin \,\theta .\cos \,\theta }} \cr
& = \tan \,\theta \cr
& {\text{Hence, option B is the correct option}}{\text{.}} \cr} $$
44.
If $$0 < x < \pi \,\,{\text{and}}$$ $$\cos x + \sin x = \frac{1}{2},$$ then tan$$x$$ is
A
$$\frac{{\left( {1 - \sqrt 7 } \right)}}{4}$$
B
$$\frac{{\left( {4 - \sqrt 7 } \right)}}{3}$$
C
$$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$
D
$$\frac{{\left( {1 + \sqrt 7 } \right)}}{4}$$
Answer :
$$ - \frac{{\left( {4 + \sqrt 7 } \right)}}{3}$$
View Solution
$$\eqalign{
& \cos x + \sin x = \frac{1}{2} \cr
& \Rightarrow \,\,1 + \sin 2x = \frac{1}{4} \cr} $$
$$ \Rightarrow \,\,\sin 2x = - \frac{3}{4},$$ so $$x$$ is obtuse and $$\frac{{2\tan x}}{{1 + {{\tan }^2}x}} = - \frac{3}{4}$$
$$\eqalign{
& \Rightarrow \,\,3{\tan ^2}x + 8\tan x + 3 = 0 \cr
& \therefore \,\,\tan x = \frac{{ - 8 \pm \sqrt {64 - 36} }}{6} \cr
& = - \frac{{ - 4 \pm \sqrt 7 }}{3} \cr
& {\text{as }}\tan x < 0 \cr
& \therefore \,\,\tan x = \frac{{ - 4 - \sqrt 7 }}{3} \cr} $$
45.
If $${p_n} = {\cos ^n}\theta + {\sin ^n}\theta ,$$ then $${p_n} - {p_{n - 2}} = k{p_{n - 4}},$$ where :
A
$$k = 1$$
B
$$k = - {\sin ^2}\theta \,{\cos ^2}\theta $$
C
$$k = {\sin ^2}\theta $$
D
$$k = {\cos ^2}\theta $$
Answer :
$$k = - {\sin ^2}\theta \,{\cos ^2}\theta $$
View Solution
$$\eqalign{
& {p_n} - {p_{n - 2}} = \left( {{{\cos }^n}\theta + {{\sin }^n}\theta } \right) - \left( {{{\cos }^{n - 2}}\theta + {{\sin }^{n - 2}}\theta } \right) \cr
& = {\cos ^{n - 2}}\theta \left( {{{\cos }^2}\theta - 1} \right) + {\sin ^{n - 2}}\theta \left( {{{\sin }^2}\theta - 1} \right) \cr
& = - {\sin ^2}\theta \,{\cos ^{n - 2}}\theta - {\cos ^2}\theta \,{\sin ^{n - 2}}\theta \cr
& = - {\sin ^2}\theta \,{\cos ^2}\theta \left( {{{\cos }^{n - 4}}\theta + {{\sin }^{n - 4}}\theta } \right) \cr
& = - {\sin ^2}\theta \,{\cos ^2}\theta {p_{n - 4}} = k{p_{n - 4}} \cr
& \Rightarrow k = - {\sin ^2}\theta \,{\cos ^2}\theta \cr} $$
46.
What is $${\sin ^2}\left( {3\pi } \right) + {\cos ^2}\left( {4\pi } \right) + {\tan ^2}\left( {5\pi } \right)$$ equal to ?
A
0
B
1
C
2
D
3
Answer :
1
View Solution
$$\eqalign{
& {\sin ^2}\left( {3\pi } \right) + {\cos ^2}\left( {4\pi } \right) + {\tan ^2}\left( {5\pi } \right) \cr
& = {\sin ^2}\left( {3\pi } \right) + {\cos ^2}\left( {\pi + 3\pi } \right) + {\tan ^2}\left( {5\pi } \right) \cr
& = \left( {{{\sin }^2}\left( {3\pi } \right) + {{\cos }^2}\left( {3\pi } \right)} \right) + {\tan ^2}\left( {2 \times 2\pi + \pi } \right) \cr
& = 1 + {\tan ^2}\pi = {\sec ^2}\pi = 1 \cr} $$
47.
If $${0^ \circ } < \theta < {180^ \circ }$$ then $$\sqrt {2 + \sqrt {2 + \sqrt {2 + ..... + \sqrt {2\left( {1 + \cos \theta } \right)} } } } ,$$ there being $$n$$ number of $$2’s,$$ is equal to
A
$$2\cos\frac{\theta }{{{2^n}}}$$
B
$$2\cos\frac{\theta }{{{2^{n - 1}}}}$$
C
$$2\cos\frac{\theta }{{{2^{n + 1}}}}$$
D
None of these
Answer :
$$2\cos\frac{\theta }{{{2^n}}}$$
View Solution
$$\sqrt {2 + \sqrt {2 + \sqrt {2 + ..... + \sqrt {2\left( {1 + \cos \theta } \right)} } } } ,$$ there being $$n$$ number of $$2’s$$
$$ = \sqrt {2 + \sqrt {2 + \sqrt {2 + ..... + \sqrt {2\left( {1 + \cos \frac{\theta }{2}} \right)} } } } ,$$ there being $$(n - 1)$$ number of $$2’s$$
$$ = \sqrt {2 + \sqrt {2 + \sqrt {2 + ..... + \sqrt {2\left( {1 + \cos \frac{\theta }{{{2^2}}}} \right)} } } } ,$$ there being $$(n - 2)$$ number of $$2’s$$
$$ = ..... = \sqrt {2\left( {1 + \cos \frac{\theta }{{{2^{n - 1}}}}} \right)} = 2\cos \frac{\theta }{{{2^n}}}.$$
48.
The set of values of $$k \in R$$ such that the equation $$\cos 2\theta + \cos \theta + k = 0$$ admits of a solution for $$\theta $$ is
A
$$\left[ {0,\frac{9}{8}} \right]$$
B
$$\left[ {0, + \infty } \right)$$
C
$$\left[ { - 2,0} \right]$$
D
None of these
Answer :
$$\left[ {0,\frac{9}{8}} \right]$$
View Solution
$$\eqalign{
& 2{\cos ^2}\theta + \cos \theta + \left( {k - 1} \right) = 0 \cr
& \therefore \,\,\cos \theta = \frac{{ - 1 \pm \sqrt {1 - 8\left( {k - 1} \right)} }}{4} = \frac{{ - 1 \pm \sqrt {9 - 8k} }}{4}. \cr} $$
For real, $$\cos\theta ,9 - 8k \geqslant 0,\,{\text{i}}{\text{.e}}{\text{., }}k \leqslant \frac{9}{8}.$$
Also, $$ - 1 \leqslant \frac{{ - 1 \pm \sqrt {9 - 8k} }}{4} \leqslant 1\,\,{\text{or, }} - 4 \leqslant - 1 \pm \sqrt {9 - 8k} \leqslant 4$$
or, $$ - 3 \leqslant \pm \sqrt {9 - 8k} \leqslant 5$$
$$\eqalign{
& \therefore \,\, - 3 \leqslant - \sqrt {9 - 8k} \,\,{\text{and }}\sqrt {9 - 8k} \leqslant 5 \cr
& \Rightarrow \,\,9 - 8k \leqslant 9\,\,{\text{and }}9 - 8k \leqslant 25 \cr
& \therefore \,\,k \geqslant 0\,\,{\text{and }}k \geqslant - 2 \cr
& \Rightarrow \,\,k \geqslant 0. \cr} $$
49.
If $$\sin \alpha = p,$$ where $$\left| p \right| \leqslant 1$$ then the quadratic equation whose roots are $$\tan \frac{\alpha }{2}$$ and $$\cot \frac{\alpha }{2}$$ is
A
$$p{x^2} + 2x + p = 0$$
B
$$p{x^2} - x + p = 0$$
C
$$p{x^2} - 2x + p = 0$$
D
None of these
Answer :
$$p{x^2} - 2x + p = 0$$
View Solution
$$\tan \frac{\alpha }{2} + \cot \frac{\alpha }{2} = \frac{1}{{\cos \frac{\alpha }{2} \cdot \sin \frac{\alpha }{2}}} = \frac{2}{{\sin \alpha }} = \frac{2}{p}\,{\text{and}}\tan \frac{\alpha }{2} \cdot \cot \frac{\alpha }{2} = 1.$$
∴ the required equation is $${x^2} - \frac{2}{p}x + 1 = 0.$$
50.
If $$\alpha + \beta + \gamma = \pi $$ then the minimum value of $$\cos A + \cos B + \cos C$$
A
is zero
B
is positive
C
lies between $$- 2$$ and $$ - 3$$
D
is $$ - 3$$
Answer :
is $$ - 3$$
View Solution
For all $$x,\cos x \geqslant - 1$$
$$\therefore \cos A + \cos B + \cos C \geqslant - 3,$$ and equality holds if
$$\cos A = \cos B = \cos C = - 1,$$ which can be attained if $$A = \pi ,B = \pi ,C = - \pi $$