Unit and Measurement MCQ Questions & Answers in Basic Physics | Physics
Learn Unit and Measurement MCQ questions & answers in Basic Physics are available for students preparing for IIT-JEE, NEET, Engineering and Medical Entrance exam.
101.
Of the following quantities, which one has dimensions different from the remaining three?
A
Energy per unit volume
B
Force per unit area
C
Product of voltage and charge per unit volume
D
Angular momentum
Answer :
Angular momentum
$$\eqalign{
& {\text{Dimensions of energy per unit volume}} \cr
& = \frac{{{\text{Dimensions of energy}}}}{{{\text{Dimensions of volume}}}} = \frac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{L^3}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] \cr
& {\text{Dimensions of force per unit area}} \cr
& = \frac{{{\text{Dimensions of force}}}}{{{\text{Dimensions of area}}}} = \frac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ {{L^2}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] \cr
& {\text{Voltage}} \times \frac{{{\text{Charge}}}}{{{\text{Volume}}}} = \frac{{\left( {\frac{W}{q}} \right) \times \left( {it} \right)}}{{{l^3}}} \cr
& = \frac{{\left( W \right)}}{{\left( {{l^3}} \right)}} = \frac{{\left[ {M{L^2}{T^{ - 2}}} \right]}}{{\left[ {{L^3}} \right]}} = \left[ {M{L^{ - 1}}{T^{ - 2}}} \right] \cr
& {\text{Angular momentum}} \cr
& = \left( r \right)\left( p \right) = \left( r \right)\left( {mv} \right) = \left[ L \right]\left[ M \right]\left[ {L{T^{ - 1}}} \right] = \left[ {M{L^2}{T^{ - 1}}} \right] \cr} $$
So, dimensions of angular momentum is different from other three.
102.
Which two of the following five physical parameters have the same dimensions?
(i) Energy density
(ii) Refractive index
(iii) Dielectric constant
(iv) Young’s modulus
(v) Magnetic field
104.
A person measures the depth of a well by measuring the time interval between dropping a stone and receiving the sound of impact with the bottom of the well. The error in his measurement of time is $$\delta T = 0.01$$ seconds and he measures the depth of the well to be $$L= 20$$ meters. Take the acceleration due to gravity $$g = 10\,m{s^{ - 2}}$$ and the velocity of sound is $$300\,m{s^{ - 1}}.$$ Then the fractional error in the measurement, $$\frac{{\delta L}}{L},$$ is closest to-
107.
The unit of the coefficient of viscosity in S.I. system is
A
$$m/kg - s$$
B
$$m - s/k{g^2}$$
C
$$kg/m - {s^2}$$
D
$$kg/m - s$$
Answer :
$$kg/m - s$$
$$F = 6\pi \eta vr \Rightarrow \eta = \frac{F}{{6\pi vr}}$$
∴ Unit of coefficient of viscosity in S.I. system $$kg/m - s.$$
108.
If energy $$\left( E \right),$$ velocity $$\left( v \right)$$ and time $$\left( T \right)$$ are chosen as the fundamental quantities, the dimensional formula of surface tension will be
A
$$\left[ {E{v^{ - 2}}{T^{ - 1}}} \right]$$
B
$$\left[ {E{v^{ - 1}}{T^{ - 2}}} \right]$$
C
$$\left[ {E{v^{ - 2}}{T^{ - 2}}} \right]$$
D
$$\left[ {{E^{ - 2}}{v^{ - 1}}{T^{ - 3}}} \right]$$
$$\eqalign{
& {\text{We know that}} \cr
& {\text{Surface tension }}\left( S \right) = \frac{{{\text{Force}}\left[ F \right]}}{{{\text{Length}}\left[ L \right]}} \cr
& {\text{So,}}\,\left[ S \right] = \frac{{\left[ {ML{T^{ - 2}}} \right]}}{{\left[ L \right]}} = \left[ {M{L^0}\;{T^{ - 2}}} \right] \cr
& {\text{Energy}}\,\left( E \right) = {\text{Force}} \times {\text{displacement}} \cr
& \Rightarrow \left[ E \right] = \left[ {M{L^2}\;{T^{ - 2}}} \right] \cr
& {\text{Velocity}}\,\left( v \right) = \frac{{{\text{ displacement }}}}{{{\text{ time }}}} \cr
& \Rightarrow \left[ v \right] = \left[ {L{T^{ - 1}}} \right] \cr
& {\text{As,}}\,S \propto {E^a}{v^b}{T^c} \cr
& {\text{where,}}\,a,b,c\,{\text{are}}\,{\text{constants}}{\text{.}} \cr
& {\text{From the principle of homogeneity,}} \cr
& \left[ {LHS} \right] = \left[ {RHS} \right] \cr
& \Rightarrow \left[ {M{L^0}{T^{ - 2}}} \right] = {\left[ {M{L^2}\;{T^{ - 2}}} \right]^a}{\left[ {L{T^{ - 1}}} \right]^b}{\left[ T \right]^c} \cr
& \Rightarrow \left[ {M{L^0}\;{T^{ - 2}}} \right] = \left[ {{M^a}{L^{2a + b}}\;{T^{ - 2a - b + c}}} \right] \cr
& {\text{Equating the power on both sides, we get}} \cr
& a = 1,2a + b = 0,b = - 2 \cr
& \Rightarrow - 2a - b + c = - 2 \cr
& \Rightarrow c = \left( {2a + b} \right) - 2 = 0 - 2 = - 2 \cr
& {\text{So}}\,\left[ S \right] = \left[ {E{v^{ - 2}}\;{T^{ - 2}}} \right] \cr} $$
109.
Two quantities $$A$$ and $$B$$ have same dimensions which mathematical operation given below is physically meaningful?
A
$$\frac{A}{B}$$
B
$$A + {B^2}$$
C
$${A^2} - B$$
D
$$A = {B^2}$$
Answer :
$$\frac{A}{B}$$
$$\left[ A \right] \ne \left[ {{B^2}} \right]$$ so, cannot be added or subtracted
110.
The density of a solid ball is to be determined in an experiment. The diameter of the ball is measured with a screw gauge, whose pitch is $$0.5 \,mm$$ and there are $$50$$ divisions on the circular scale. The reading on the main scale is $$2.5 \,mm$$ and that on the circular scale is $$20$$ divisions. If the measured mass of the ball has a relative error of $$2\% ,$$ the relative percentage error in the density is-
A
$$0.9\% $$
B
$$2.4\% $$
C
$$3.1\% $$
D
$$4.2\% $$
Answer :
$$3.1\% $$
Diameter
$$\eqalign{
& D = M.S.R. + \left( {C.S.R} \right) \times L.C. \cr
& D = 2.5 + 20 \times \frac{{0.5}}{{50}} \cr
& D = 2.70\,\,mm \cr} $$
The uncertainty in the measurement of diameter
$$\Delta D = 0.01\, mm$$
we know that
$$\eqalign{
& \rho = \frac{{{\text{Mass}}}}{{{\text{Volume}}}} = \frac{M}{V} = \frac{M}{{\frac{4}{3}\pi {{\left( {\frac{D}{2}} \right)}^3}}} \cr
& \therefore \frac{{\Delta \rho }}{\rho } \times 100 = \frac{{\Delta M}}{M} \times 100 + 3\frac{{\Delta D}}{\Delta } \times 100 \cr
& = 2 + 3 \times \frac{{0.01}}{{2.70}} \times 100 \cr
& = 3.1\% \cr} $$