Unit and Measurement MCQ Questions & Answers in Basic Physics | Physics
Learn Unit and Measurement MCQ questions & answers in Basic Physics are available for students preparing for IIT-JEE, NEET, Engineering and Medical Entrance exam.
51.
The pitch of the screw gauge is $$0.5\,mm.$$ Its circular scale contains $$50$$ divisions. The least count of the screw gauge is
A
$$0.001\,mm$$
B
$$0.01\,mm$$
C
$$0.02\,mm$$
D
$$0.025\,mm$$
Answer :
$$0.01\,mm$$
Least count $$ = \frac{{0.5}}{{50}} = 0.01\,mm$$
52.
A physical quantity of the dimensions of length that can be formed out of $$c,G$$ and $$\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}$$ is [$$c$$ is velocity of light, $$G$$ is universal constant of gravitation and $$e$$ is charge]
A
$${c^2}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
B
$$\frac{1}{{{c^2}}}{\left[ {\frac{{{e^2}}}{{G4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
C
$$\frac{1}{c}G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}$$
D
$$\frac{1}{{{c^2}}}{\left[ {G\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
Let dimensions of length is related as,
$$\eqalign{
& L = {\left[ c \right]^x}{\left[ G \right]^y}{\left[ {\frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^z} \Rightarrow \frac{{{e^2}}}{{4\pi {\varepsilon _0}}} = M{L^3}{T^{ - 2}} \cr
& L = {\left[ {L{T^{ - 1}}} \right]^x}{\left[ {{M^{ - 1}}{L^3}{T^{ - 2}}} \right]^y}{\left[ {M{L^3}{T^{ - 2}}} \right]^z} \cr
& [L] = \left[ {{L^{x + 3y + 3z}}\,{M^{ - y + z}}\,{T^{ - x - 2y - 2z}}} \right] \cr} $$
Comparing both sides
$$z = y = \frac{1}{2},x = - 2\,\,{\text{Hence,}}\,L = {c^{ - 2}}{\left[ {G \cdot \frac{{{e^2}}}{{4\pi {\varepsilon _0}}}} \right]^{\frac{1}{2}}}$$
53.
In a simple pendulum experiment, the maximum percentage error in the measurement of length is $$2\% $$ and that in the observation of the time- period is $$3\% .$$ Then the maximum percentage error in determination of the acceleration due to gravity $$g$$ is
A
$$5\% $$
B
$$6\% $$
C
$$1\% $$
D
$$8\% $$
Answer :
$$8\% $$
As we know, time period of a simple pendulum
$$T = 2\pi \sqrt {\frac{L}{g}} \Rightarrow g = \frac{{4{\pi ^2}L}}{{{T^2}}}$$
The maximum percentage error in $$g$$
$$\eqalign{
& \frac{{\Delta g}}{g} \times 100 = \frac{{\Delta L}}{L} \times 100 + 2\left( {\frac{{\Delta T}}{T} \times 100} \right) \cr
& = 2\% + 2\left( {3\% } \right) = 8\% \cr} $$
54.
The frequency of vibration $$f$$ of a mass $$m$$ suspended from a spring of spring constant $$k$$ is given by a relation of the type $$f = C{m^x}{k^y},$$ where $$C$$ is a dimensionless constant. The values of $$x$$ and $$y$$ are
A
$$x = \frac{1}{2},y = \frac{1}{2}$$
B
$$x = - \frac{1}{2},y = - \frac{1}{2}$$
C
$$x = \frac{1}{2},y = - \frac{1}{2}$$
D
$$x = - \frac{1}{2},y = \frac{1}{2}$$
Answer :
$$x = - \frac{1}{2},y = \frac{1}{2}$$
$$\eqalign{
& {\text{As}}\,f = C{m^x}{k^y} \cr
& \therefore \left( {{\text{Dimension of}}\,f} \right) = C{\left( {{\text{dimension of }}m} \right)^x} \times {\left( {{\text{dimensions of }}k} \right)^y} \cr
& \left[ {{T^{ - 1}}} \right] = C{\left[ M \right]^x}{\left[ {M{T^{ - 2}}} \right]^y}\,......\left( {\text{i}} \right)\,\left( {{\text{where,}}\,k = \frac{{{\text{force}}}}{{{\text{length}}}}} \right) \cr} $$
Applying the principle of homogeneity of dimensions, we get
$$\eqalign{
& x + y = 0, - 2y = - 1\,{\text{or}}\,y = \frac{1}{2} \cr
& \therefore x = - \frac{1}{2} \cr} $$
55.
Which of the following quantities has not been expressed in proper unit?
A
torque, newton metre
B
stress, newton $${\text{metr}}{{\text{e}}^{ - 2}}$$
C
modulus of elasticity, newton $${\text{metr}}{{\text{e}}^{ - 2}}$$
D
surface tension, newton $${\text{metr}}{{\text{e}}^{ - 2}}$$
Answer :
surface tension, newton $${\text{metr}}{{\text{e}}^{ - 2}}$$
Torque $$\tau = r \times F$$
Dimensions of $$\tau = {\text{dimension of}}\,r \times {\text{dimension of }}F$$
$$\eqalign{
& = \left[ L \right]\left[ {ML{T^{ - 2}}} \right] \cr
& = \left[ {M{L^2}{T^{ - 2}}} \right] \cr} $$
57.
In a particular system, the unit of length, mass and time are chosen to be $$10\,cm,\,10\,g$$ and $$0.1\,s$$ respectively. The unit of force in this system will be equivalent to
59.
The ratio of the dimensions of Planck’s constant and that of the moment of inertia is the dimension of
A
frequency
B
velocity
C
angular momentum
D
time
Answer :
frequency
$$\eqalign{
& {\text{Energy carried by photon is given by }}E = hv \cr
& \Rightarrow h = {\text{Planc's constant}} = \frac{E}{v} \cr
& \therefore \left[ h \right] = \frac{{\left[ {M{L^2}\;{T^{ - 2}}} \right]}}{{\left[ {{T^{ - 1}}} \right]}} = \left[ {M{L^2}\;{T^{ - 1}}} \right] \cr
& {\text{and}}\,I = {\text{moment of inertia }} = M{R^2} \cr
& \Rightarrow \left[ I \right] = \left[ {M{L^2}} \right] \cr
& {\text{Hence,}}\,\frac{{\left[ h \right]}}{{\left[ I \right]}} = \frac{{\left[ {M{L^2}\;{T^{ - 1}}} \right]}}{{\left[ {M{L^2}} \right]}} = \left[ {{T^{ - 1}}} \right] \cr
& = \frac{1}{{[\;T]}} = {\text{dimension of frequency}} \cr} $$ Alternative
$$\eqalign{
& \frac{h}{I} = \frac{{\frac{E}{v}}}{I} \cr
& = \frac{{E \times T}}{I} = \frac{{\left( {\frac{{kg - {m^2}}}{{{s^2}}}} \right) \times s}}{{\left( {kg - {m^2}} \right)}} \cr
& = \frac{1}{{\;s}} = \frac{1}{{{\text{ time }}}} = {\text{frequency}} \cr} $$
Thus, dimensions of $$\frac{h}{I}$$ is same as that of frequency.
60.
The electric field is given by $$\vec E = \frac{A}{{{x^3}}}\hat i + By\hat j + C{z^2}\hat k.$$ The SI units of $$A,B$$ and $$C$$ are respectively: [where $$x,y$$ and $$z$$ are in $$m$$ ]
A
$$\frac{{N - {m^3}}}{C},\frac{V}{{{m^2}}},\frac{N}{{{m^2} - C}}$$
B
$$V - {m^2},\frac{V}{m},\frac{N}{{{m^2} - C}}$$
C
$$\frac{V}{{{m^2}}},\frac{V}{m},\frac{{N - C}}{{{m^2}}}$$
D
$$\frac{V}{m},\frac{{N - {m^3}}}{C},\frac{{N - C}}{m}$$