The equation for the line is

$$\eqalign{
& P = \frac{{ - {P_0}}}{{{V_0}}}V + 3\,P \cr
& \left[ {{\text{slope}} = \frac{{ - {P_0}}}{{{V_0}}},c = 3\,{P_0}} \right] \cr
& P{V_0} + {P_0}V = 3\,{P_0}{V_0}\,\,\,\,\,.....\left( {\text{i}} \right) \cr
& {\text{But }}pv = nRT \cr
& \therefore \,\,p = \frac{{nRT}}{v}\,\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
From (i) & (ii)
$$\eqalign{
& \frac{{nRT}}{v}{V_0} + {P_0}V = 3\,{P_0}{V_0} \cr
& \therefore nRT{V_0} + {P_0}{V^2} = 3\,{P_0}{V_0}\,\,\,\,\,.....\left( {{\text{iii}}} \right) \cr} $$
For temperature to be maximum $$\frac{{dT}}{{dv}} = 0$$
Differentiating e.q. (iii) by $$'v'$$ we get
$$\eqalign{
& nR{V_0}\frac{{dT}}{{dv}} + {P_0}\left( {2\,v} \right) = 3\,{P_0}{V_0} \cr
& \therefore \,\,nR{V_0}\frac{{dT}}{{dv}} = 3\,{P_0}{V_0} - 2\,{P_0}V \cr
& \frac{{dT}}{{dv}} = \frac{{3\,{P_0}{V_0} - 2\,{P_0}V}}{{nR{V_0}}} = 0 \cr
& V = \frac{{3\,{V_0}}}{2} \cr
& \therefore \,\,p = \frac{{3\,{P_0}}}{2}\,\,\,\left[ {{\text{From}}\left( {\text{i}} \right)} \right] \cr
& \therefore \,\,{T_{\max }} = \frac{{9\,{P_0}{V_0}}}{{4\,nR}}\,\,\left[ {{\text{From}}\left( {{\text{iii}}} \right)} \right] \cr} $$