Chemical Equilibrium MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Equilibrium MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

41. For the reaction $$2N{O_{2\left( g \right)}} \rightleftharpoons {N_2}{O_{4\left( g \right)}},\frac{{{K_p}}}{{{K_c}}}$$     is equal to

A $$\frac{1}{{RT}}$$
B $$\sqrt {RT} $$
C $$RT$$
D $${\left( {RT} \right)^2}$$
Answer :   $$\frac{1}{{RT}}$$

42. An example of a reversible reaction is :

A $$Pb{\left( {N{O_3}} \right)_2}aq + 2NaI\left( {aq} \right) \to Pb{I_2}\left( s \right) + 2NaN{O_3}\left( {aq} \right)$$
B $$AgN{O_3}\left( {aq} \right) + HCl\left( {aq} \right) \to AgCl\left( s \right) + NaN{O_3}\left( {aq} \right)$$
C $$2Na\left( s \right) + {H_2}O\left( l \right) \to 2NaOH\left( {aq} \right) + {H_2}\left( g \right)$$
D $$KN{O_3}\left( {aq} \right) + NaCl\left( {aq} \right) \to KCl\left( {aq} \right) + NaN{O_3}\left( {aq} \right)$$
Answer :   $$KN{O_3}\left( {aq} \right) + NaCl\left( {aq} \right) \to KCl\left( {aq} \right) + NaN{O_3}\left( {aq} \right)$$

43. Gaseous $${N_2}{O_4}$$  dissociates into gaseous $$N{O_2}$$  according to the reaction $$\left[ {{N_2}{O_4}\left( g \right) \rightleftharpoons 2N{O_2}\left( g \right)} \right]$$
At $$300\,K$$  and $$1\,atm$$  pressure, the degree of dissociation of $${{N_2}{O_4}}$$  is $$0.2.$$  If one mole of $${{N_2}{O_4}}$$  gas is contained in a vessel, then the density of the equilibrium mixture is :

A $$1.56\,g/L$$
B $$6.22\,g/L$$
C $$3.11\,g/L$$
D $$4.56\,g/L$$
Answer :   $$3.11\,g/L$$

44. $${K_1}$$  and $${K_2}$$  are equilibrium constant for reactions (i) and (ii)
$${N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons $$     $$2NO\left( g \right)...{\text{(i)}}$$
$$NO\left( g \right) \rightleftharpoons $$   $$\frac{1}{2}{N_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right)...{\text{(ii)}}$$
Then,

A $${K_1} = {\left[ {\frac{1}{{{K_2}}}} \right]^2}$$
B $${K_1} = K_2^2$$
C $${K_1} = \frac{1}{{{K_2}}}$$
D $${K_1} = {\left( {{K_2}} \right)^0}$$
Answer :   $${K_1} = {\left[ {\frac{1}{{{K_2}}}} \right]^2}$$

45. At $$500\,K,$$  the equilibrium constant for the reaction $${H_{2\left( g \right)}} + {I_{2\left( g \right)}} \rightleftharpoons 2H{I_{\left( g \right)}}$$     is 24.8. If $$\frac{1}{2}mol/L$$   of $$HI$$  is present at equilibrium, what are the concentrations of $${H_2}$$  and $${I_2},$$ assuming that we started by taking $$HI$$  and reached the equilibrium at $$500\,K?$$

A $$0.068\,mol\,{L^{ - 1}}$$
B $$1.020\,mol\,{L^{ - 1}}$$
C $$0.10\,mol\,{L^{ - 1}}$$
D $$1.20\,mol\,{L^{ - 1}}$$
Answer :   $$0.10\,mol\,{L^{ - 1}}$$

46. The standard Gibbs energy change at $$300 K$$  for the reaction $$2A \rightleftharpoons B + C$$    is $$2494.2.J.$$  At a given time, the composition of the reaction mixture is $$\left[ A \right] = \frac{1}{2},\left[ B \right] = 2\,{\text{and}}\,\left[ C \right] = \frac{1}{2}.$$      The reaction proceeds in the : $$\left[ {R = 8.314\,J/K/mol,\,e = 2.718} \right]$$

A forward direction because $$Q < {K_c}$$
B reverse direction because $$Q < 0\,{K_c}$$
C forward direction because $$0Q > {K_c}$$
D reverse direction because $$Q > {K_c}$$
Answer :   reverse direction because $$Q > {K_c}$$

47. The value of $${K_c}$$  for the following equilibrium is $$CaC{O_{3\left( s \right)}} \rightleftharpoons Ca{O_{\left( s \right)}} + C{O_{2\left( g \right)}}.$$       Given $${K_p} = 167\,bar$$   at $$1073\,K.$$

A $$1.873\,mol\,{L^{ - 1}}$$
B $$4.38 \times {10^{ - 4}}\,mol\,{L^{ - 1}}$$
C $$6.3 \times {10^4}\,mol\,{L^{ - 1}}$$
D $$6.626\,mol\,{L^{ - 1}}$$
Answer :   $$1.873\,mol\,{L^{ - 1}}$$

48. In the dissociation of $$PC{l_5}$$  as $$PC{l_5}\left( g \right) \rightleftharpoons PC{l_3}\left( g \right) + C{l_2}\left( g \right)$$       if the degree of dissociation is $$\alpha $$  at equilibrium pressure $$P,$$  then the equilibrium constant for the reaction is

A $${K_p} = \frac{{{\alpha ^2}}}{{1 + {\alpha ^2}P}}$$
B $${K_p} = \frac{{{\alpha ^2}{P^2}}}{{1 - {\alpha ^2}}}$$
C $${K_p} = \frac{{{P^2}}}{{1 - {\alpha ^2}}}$$
D $${K_p} = \frac{{{\alpha ^2}P}}{{1 - {\alpha ^2}}}$$
Answer :   $${K_p} = \frac{{{\alpha ^2}P}}{{1 - {\alpha ^2}}}$$

49. The equilibrium constant for the reaction $${N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2N{O_2}\left( g \right)$$      at temperature $$T$$ is $$4 \times {10^{ - 4}}.$$  The value of $${K_c}$$ for the reaction $$N{O_2}\left( g \right) \rightleftharpoons \frac{1}{2}{N_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right)$$       at the same temperature is

A $$4 \times {10^{ - 4}}$$
B $$50$$
C $$2.5 \times {10^2}$$
D $$0.02$$
Answer :   $$50$$

50. If $${K_1}$$  and $${K_2}$$  are the respective equilibrium constants for the two reactions,
$$Xe{F_6}\left( g \right) + {H_2}O\left( g \right) \rightleftharpoons $$     $$XeO{F_4}\left( g \right) + 2HF\left( g \right)$$
$$Xe{O_4}\left( g \right) + Xe{F_6}\left( g \right) \rightleftharpoons $$     $$XeO{F_4}\left( g \right) + Xe{O_3}{F_2}\left( g \right)$$
The equilibrium constant of the reaction,
$$Xe{O_4}\left( g \right) + 2HF\left( g \right) \rightleftharpoons $$     $$Xe{O_3}{F_2}\left( g \right) + {H_2}O\left( g \right)$$      will be

A $$\frac{{{K_1}}}{{{{\left( {{K_2}} \right)}^2}}}$$
B $${K_1} \cdot {K_2}$$
C $$\frac{{{K_1}}}{{{K_2}}}$$
D $$\frac{{{K_2}}}{{{K_1}}}$$
Answer :   $$\frac{{{K_2}}}{{{K_1}}}$$