Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths
Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.
91.
Which of the following is correct for \[f\left( x \right) = \left\{ \begin{array}{l}
\left( {x - e} \right){2^{ - {2^{\left( {\frac{1}{{\left( {e - x} \right)}}} \right)}}}},\,\,\,x \ne e{\rm{ \,at\, }}x = e\\
\,\,\,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = e\,\,\,\,
\end{array} \right.\]
A
$$f\left( x \right)$$ is discontinuous at $$x = e$$
B
$$f\left( x \right)$$ is differentiable at $$x = e$$
C
$$f\left( x \right)$$ is non-differentiable at $$x = e$$
D
none of these
Answer :
$$f\left( x \right)$$ is non-differentiable at $$x = e$$
96.
\[{\rm{Let\, }}f\left( x \right) = \left\{ \begin{array}{l}
{\left( {x - 1} \right)^2}\cos \frac{1}{{x - 1}} - \left| x \right|,\,x \ne 1\\
- 1,\,x = 1
\end{array} \right.\]
The set of points where $$f\left( x \right)$$ is not differentiable is :
A
$$\left\{ 1 \right\}$$
B
$$\left\{ {0,\,1} \right\}$$
C
$$\left\{ 0 \right\}$$
D
none of these
Answer :
$$\left\{ 0 \right\}$$
The doubtful points are $$x=0,\,1$$ because these are the turning points of the definition. $$\left| x \right|$$ is not differentiable at $$x=0,$$ while $${\left( {x - 1} \right)^2}\cos \frac{1}{{x - 1}}$$ is differentiable. The algebraic sum of a differentiable function and a nondifferentiable function is nondifferentiable. So, $$f\left( x \right)$$ is not differentiable at $$x=0.$$ Now,
$$\eqalign{
& f'\left( {1 + 0} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{{{\left( {1 + h - 1} \right)}^2}\cos \frac{1}{{1 + h - 1}} - \left| {1 + h} \right| - \left( { - 1} \right)}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \frac{{{h^2}\cos \frac{1}{h} - h}}{h} \cr
& = \mathop {\lim }\limits_{h \to 0} \left( {h\cos \frac{1}{h} - 1} \right) \cr
& = 0 - 1 = - 1 \cr} $$
Similarly, $$f'\left( {1 - 0} \right) = - 1.$$ So, $$f\left( x \right)$$ is differentiable at $$x=1.$$
97.
Let $$f\left( x \right) = 4$$ and $$f'\left( x \right) = 4.$$ Then $$\mathop {\lim }\limits_{x \to 2} \frac{{xf\left( 2 \right) - 2f\left( x \right)}}{{x - 2}}$$ is given by-
98.
The derivative of $${\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$$ with respect to $${\cos ^{ - 1}}\left[ {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right]$$ is equal to :
99.
Let $$f:R \to R$$ be a function defined by $$f\left( x \right) = \min \left\{ {x + 1,\,\left| x \right| + 1} \right\},$$
Then which of the following is true?
A
$$f\left( x \right)$$ is differentiable everywhere
B
$$f\left( x \right)$$ is not differentiable at $$x =0$$
C
$$f\left( x \right) \geqslant 1{\text{ for all }}x \in R$$
D
$$f\left( x \right)$$ is not differentiable at $$x =1$$
Answer :
$$f\left( x \right)$$ is differentiable everywhere
$$\eqalign{
& f\left( x \right) = \min \left\{ {x + 1,\,\left| x \right| + 1} \right\} \cr
& \Rightarrow f\left( x \right) = x + 1\,\forall \,x \in R \cr} $$
Hence, $$f\left( x \right)$$ is differentiable everywhere for all $$x \in R.$$
100.
Let $$f\left( x \right)$$ be a polynomial function of degree 2 and $$f\left( x \right) > 0$$ for all $$x\, \in \,R.$$ If $$g\left( x \right) = f\left( x \right) + f'\left( x \right) + f''\left( x \right)$$ then for any $$x\,:$$
A
$$g\left( x \right) < 0$$
B
$$g\left( x \right) > 0$$
C
$$g\left( x \right) = 0$$
D
$$g\left( x \right) \geqslant 0$$
Answer :
$$g\left( x \right) > 0$$
$$\eqalign{
& {\text{Let }}f\left( x \right) = a{x^2} + bx + c \cr
& {\text{Then }}g\left( x \right) = a{x^2} + bx + c + 2ax + b + 2a \cr
& = a{x^2} + \left( {2a + b} \right)x + 2a + b + c \cr
& {\text{As }}f\left( x \right) > 0\,{\text{for all }}x, \cr
& a > 0\,{\text{and }}D = {b^2} - 4ac < 0 \cr
& g\left( x \right) > 0\,{\text{for all }}x, \cr
& {\text{if }}a > 0\,{\text{and }}D = {\left( {2a + b} \right)^2} - 4a\left( {2a + b + c} \right) < 0 \cr
& {\text{Now, }}{\left( {2a + b} \right)^2} - 4a\left( {2a + b + c} \right) = - 4{a^2} + {b^2} - 4ac < 0{\text{ }} \cr
& {\text{Hence, }}g\left( x \right) > 0 \cr} $$