Differentiability and Differentiation MCQ Questions & Answers in Calculus | Maths

Learn Differentiability and Differentiation MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

91. Which of the following is correct for \[f\left( x \right) = \left\{ \begin{array}{l} \left( {x - e} \right){2^{ - {2^{\left( {\frac{1}{{\left( {e - x} \right)}}} \right)}}}},\,\,\,x \ne e{\rm{ \,at\, }}x = e\\ \,\,\,\,\,\,\,\,\,\,\,\,\,0,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x = e\,\,\,\, \end{array} \right.\]

A $$f\left( x \right)$$  is discontinuous at $$x = e$$
B $$f\left( x \right)$$  is differentiable at $$x = e$$
C $$f\left( x \right)$$  is non-differentiable at $$x = e$$
D none of these
Answer :   $$f\left( x \right)$$  is non-differentiable at $$x = e$$

92. If $$f\left( x \right) = \cos \,x.\cos \,2x.\cos \,8x\,.\cos \,16x$$         then $$f'\left( {\frac{\pi }{4}} \right)$$  is :

A $$\sqrt 2 $$
B $$\frac{1}{{\sqrt 2 }}$$
C 1
D none of these
Answer :   $$\sqrt 2 $$

93. If $$f\left( x \right) = {\log _x}\left( {\ln x} \right),$$     then at $$x = e,\,f'\left( x \right)$$    equals :

A $$0$$
B $$1$$
C $$e$$
D $$\frac{1}{e}$$
Answer :   $$\frac{1}{e}$$

94. The derivative of $${\text{ln}}\left( {x + \sin \,x} \right)$$   with respect to $$\left( {x + \cos \,x} \right)$$   is :

A $$\frac{{1 + \cos \,x}}{{\left( {x + \sin \,x} \right)\left( {1 - \sin \,x} \right)}}$$
B $$\frac{{1 - \cos \,x}}{{\left( {x + \sin \,x} \right)\left( {1 + \sin \,x} \right)}}$$
C $$\frac{{1 - \cos \,x}}{{\left( {x - \sin \,x} \right)\left( {1 + \cos \,x} \right)}}$$
D $$\frac{{1 + \cos \,x}}{{\left( {x - \sin \,x} \right)\left( {1 - \cos \,x} \right)}}$$
Answer :   $$\frac{{1 + \cos \,x}}{{\left( {x + \sin \,x} \right)\left( {1 - \sin \,x} \right)}}$$

95. Which one of the following is correct in respect of the function $$f\left( x \right) = \left| x \right| + {x^2}$$

A $$f\left( x \right)$$  is not continuous at $$x = 0$$
B $$f\left( x \right)$$  is differentiable at $$x = 0$$
C $$f\left( x \right)$$  is continuous but not differentiable at $$x = 0$$
D none of the above
Answer :   $$f\left( x \right)$$  is continuous but not differentiable at $$x = 0$$

96. \[{\rm{Let\, }}f\left( x \right) = \left\{ \begin{array}{l} {\left( {x - 1} \right)^2}\cos \frac{1}{{x - 1}} - \left| x \right|,\,x \ne 1\\ - 1,\,x = 1 \end{array} \right.\]
The set of points where $$f\left( x \right)$$  is not differentiable is :

A $$\left\{ 1 \right\}$$
B $$\left\{ {0,\,1} \right\}$$
C $$\left\{ 0 \right\}$$
D none of these
Answer :   $$\left\{ 0 \right\}$$

97. Let $$f\left( x \right) = 4$$   and $$f'\left( x \right) = 4.$$   Then $$\mathop {\lim }\limits_{x \to 2} \frac{{xf\left( 2 \right) - 2f\left( x \right)}}{{x - 2}}$$     is given by-

A 2
B $$-2$$
C $$-4$$
D 3
Answer :   $$-4$$

98. The derivative of $${\sin ^{ - 1}}\left( {\frac{{2x}}{{1 + {x^2}}}} \right)$$    with respect to $${\cos ^{ - 1}}\left[ {\frac{{1 - {x^2}}}{{1 + {x^2}}}} \right]$$    is equal to :

A $$1$$
B $$ - 1$$
C $$2$$
D none of these
Answer :   $$1$$

99. Let $$f:R \to R$$    be a function defined by $$f\left( x \right) = \min \left\{ {x + 1,\,\left| x \right| + 1} \right\},$$
Then which of the following is true?

A $$f\left( x \right)$$  is differentiable everywhere
B $$f\left( x \right)$$  is not differentiable at $$x =0$$
C $$f\left( x \right) \geqslant 1{\text{ for all }}x \in R$$
D $$f\left( x \right)$$  is not differentiable at $$x =1$$
Answer :   $$f\left( x \right)$$  is differentiable everywhere

100. Let $$f\left( x \right)$$  be a polynomial function of degree 2 and $$f\left( x \right) > 0$$   for all $$x\, \in \,R.$$  If $$g\left( x \right) = f\left( x \right) + f'\left( x \right) + f''\left( x \right)$$       then for any $$x\,:$$

A $$g\left( x \right) < 0$$
B $$g\left( x \right) > 0$$
C $$g\left( x \right) = 0$$
D $$g\left( x \right) \geqslant 0$$
Answer :   $$g\left( x \right) > 0$$